# Optics for Engineers Chapter 2 

Charles A. DiMarzio<br>Northeastern University

Jan. 2014

## Outline of Geometric Optics

- Chapter 2
- Snell's Law from Fermat's Principle
- Mirrors and Refractive Surfaces
- Multiple Surfaces: Simple Lenses: The Thin Lens
- Image Location, Orientation, Magnification
- Chapter 3: Matrix Optics: Principal Planes
- Chapter 4: Stops Limit Light Gathering and FOV
- Chapter 5: Aberrations Limit Resolution
- Later: Wave Optics: Diffraction-Limited Resolution in Ch. 8


## "High-School Optics"



## "High-School Optics Rules"

- Find front and back focal points, $F$ and $F^{\prime}$, located $f$ in front of, and in back of, the lens.
- Trace the ray from the object arrow parallel to the axis, refracting out through the back focal point.
- Trace the ray from the object arrow through the front focal point, out parallel to the axis.
- They intersect at the image.
- Check by tracing the ray through the center of the lens which does not refract.


## "The AP Version"



## Concepts for Refraction

- Plane of Incidence Contains Incident (and Exiting) Ray and Normal (and is the plane of the 2-D drawing)
- Angle of Incidence Is Defined Relative to Normal



## Snell's Law



## Snell's Law: Examples



## Snell's Law: Analogy

- Driving a car from an asphalt road onto a dirt road
- Asphalt-to-dirt line is diagonal.
- Dirt slows speed.
- Car tries to turn to the right.
- Dirt-to-Asphalt: Car turns back to the left.
- This is just an analogy to remember the direction.



## Reflection and Refraction



Reflection:


## Total Internal Reflection

- Critical Angle (No Solution for $\theta^{\prime}$ )

$$
n \sin \theta_{c}=1
$$

- For $\theta<\theta_{c}$ Reflection and Refraction
- For $\theta>\theta_{c} 100 \%$ Reflection



## Snell's Window



Carol Grant
Q: How would you reconstruct the original scene?

## Imaging Sign Conventions and Coordinates



- $z$ Coordinates
$-s$ for Object
- $s^{\prime}$ for Image
- Lens
$-s>0$ to Left
$-s^{\prime}>0$ to Right
$-f>0$ for
Converging
- Mirror
- $s>0$ to Left
$-s^{\prime}>0$ to Left
$-f>0$ for
Concave


## Imaging Terms

We will discuss these in detail later.
The important issues now are the definitions.

| Quantity | Definition | Equation | Notes |
| :--- | :---: | :---: | :--- |
| Object distance | $s$ |  | Positive to the <br> left |
| Image distance | $s^{\prime}$ | $\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}$ | Positive to the <br> right for inter- <br> face or lens. <br> Positive to the <br> left for mirror. |
| Magnification | $m=\frac{x^{\prime}}{x}$ | $m=-\frac{x^{\prime}}{x}$ |  |
| Angular magnification | $m_{\alpha}=\frac{\partial \alpha^{\prime}}{\partial \alpha}$ | $\left\|m_{\alpha}\right\|=\frac{1}{\|m\|}$ |  |
| Axial Magnification | $m_{z}=\frac{\partial s^{\prime}}{\partial s}$ | $\left\|m_{z}\right\|=\|m\|^{2}$ |  |

## Pause for Reflection

## Take-Away Messsge

- All of Geometric Optics is Based on
- Law of Reflection

$$
\theta^{\prime}=\theta
$$

- Snell's Law of Refraction

$$
n \sin \theta=n^{\prime} \sin \theta^{\prime}
$$

- But Imaging Equations are Useful Simpifications
- We Turn to Those Next (Plane mirror, curved mirror, plane dielectric interface, curved dielectric interface, simple lens, compound Iens).


## Reflection at a Plane Mirror (1)

- Narcissus
- ". . . the looking glasses of the women..." Exodus 38:8
- Image Location:
- Similar Triangles
$-s^{\prime}=-s$
(Planar reflector)
- Virtual Image as Shown (Dotted Lines)

- Q: Could we have a virtual object? How?


## Reflection at a Plane Mirror (2)

- Magnification
(Transverse)
- More Similar

Triangles

- Result: $x^{\prime}=x \quad m=1$

$$
\begin{aligned}
& m=\frac{x^{\prime}}{x}=\frac{-s^{\prime}}{s}=1 \\
& (\text { Planar reflector) }
\end{aligned}
$$



Upright $(m>0) \&$ Virtual (Dotted Lines)

- Angular Magnification

$$
m_{\alpha}=\frac{d \alpha^{\prime}}{d \alpha}=-1 \quad(\text { Planar reflector })
$$



## Reflection at a Plane Mirror (3)

## Axial Magnification

$$
m_{z}=\frac{d s^{\prime}}{d s}=\frac{s^{\prime}}{s}=-1 \quad(\text { Planar reflector })
$$

Summary of Imaging Parameters

$$
s=-s^{\prime} \quad m=1 \quad m_{z}=-1
$$

Upright, Virtual, Perverted*, but Not Distorted**
*Right-Handed Coordinate System Imaged to Left-Handed **Distorted Means $m_{z} \neq m$.

Misconception: Mirror Does Not Reverse Left and Right Left is Left, Right is Right, but Front is Back

## Imaging Equations

| Surface | $s^{\prime}$ | $m$ | $m_{\alpha}$ | $m_{z}$ | Image** | O* | D* | P* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Planar Mirror*** | $s^{\prime}=-s$ | 1 | -1 | -1 | Virtual | Upright | No | Yes |
| Concave Mirror $s>f$ | $\frac{1}{s^{\prime}}+\frac{1}{s}=\frac{1}{f}$ | $-s^{\prime} / s$ | $-m^{2}$ | $-1 / m$ | Real | Inverted | Yes | No |
| Convex Mirror | $\frac{1}{s^{\prime}}+\frac{1}{s}=\frac{1}{f}$ | $-s^{\prime} / s$ | $-m^{2}$ | $-1 / m$ | Virtual | Upright | Yes | Yes |
| Planar Refractor | $\frac{s}{n}=\frac{s^{\prime}}{n^{\prime}}$ | 1 | $\frac{n}{n^{\prime}}$ | $\frac{n^{\prime}}{n}$ | Virtual | Upright | Yes | No |
| Curved Refractor $s>f$ | $\frac{n}{s}+\frac{n^{\prime}}{s^{\prime}}=\frac{n^{\prime}-n}{r}$ | $-\frac{n s^{\prime}}{n^{\prime} s}$ | -1 | $-\frac{n}{n^{\prime}} m^{2}$ | Real | Inverted | Yes | Yes |

** The Image is Defined as Real or Virtual for a Real Object
*** Complete Analysis in green text. The rest is coming.


## The Retroreflector



## Curved (Spherical) Mirror (1)

All Rays from the Object Go Through the Image (No Aberrations). Work with the Easy Ones.

A. Vertex Ray

C. Ray Intersection

B. Radial Ray

D. Similar Triangles

Image Location

$$
\begin{aligned}
& \quad \frac{1}{s^{\prime}}+\frac{1}{s}=\frac{2}{r} \\
& \text { Magnification }
\end{aligned}
$$

$$
m=\frac{x^{\prime}}{x}=-\frac{s^{\prime}}{s}
$$

$$
\begin{align*}
& \frac{x}{s-r}=\frac{-x^{\prime}}{r-s^{\prime}}  \tag{C}\\
& \frac{x}{s}=\frac{-x^{\prime}}{s^{\prime}} \tag{D}
\end{align*}
$$

## Curved (Spherical) Mirror (2)

- Focal Length Defined in General

$$
\frac{1}{s^{\prime}}+\frac{1}{s}=\frac{1}{f}
$$

- Specific Result for Spherical Mirror

$$
f=\frac{r}{2} \quad \text { (Spherical reflector) }
$$

- Physical Signficance and Definition of $f$

$$
s^{\prime} \rightarrow f \quad s \rightarrow \infty \quad \text { or } \quad s \rightarrow f \quad s^{\prime} \rightarrow \infty .
$$

## Curved (Spherical) Mirror (3)

- Angular Magnification

$$
m_{\alpha}=\frac{s}{s^{\prime}} \quad\left|m_{\alpha}\right|=|1 / m| \quad \text { (Spherical reflector) }
$$

- Axial Magnification

$$
\begin{gathered}
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{2}{r} \\
-\frac{d s}{s^{2}}-\frac{d s^{\prime}}{\left(s^{\prime}\right)^{2}}=0 \\
m_{z}=\frac{d s^{\prime}}{d s}=-\left(\frac{s^{\prime}}{s}\right)^{2} \quad m_{z}=-m^{2} \quad\left|m_{z}\right|=|m|^{2}
\end{gathered}
$$

## Curved (Spherical) Mirror (4)

- Imaging Equation

$$
\frac{1}{s^{\prime}}+\frac{1}{s}=\frac{1}{f} \quad f=\frac{r}{2}
$$

- Magnification

$$
m=-\frac{s^{\prime}}{s} \quad m_{\alpha}=\frac{1}{m} \quad m_{z}=-m^{2}
$$

- Summary: The Image in this Case is...
- Real
- Inverted
- Distorted (Unless $s=s^{\prime}$ )
- Handedness-Preserved
- Q: Can a Concave Mirror Ever Produce a Virtual Image of a Real Object? (Hint: What if $s^{\prime}=0$ ?)


## Large Reflective Optics


"Every Material that Transmits $10 \mu \mathrm{~m}$ Light is Expensive." Not Completely True, but Close.

## Reflective or Refractive

## In-Practice

- Reflective optical elements are common for large diameters, e.g. tens of cm. and up.
- The decision often changes a bit in the infrared where optical materials are more expensive.
- Reflective optics are also common for wide ranges of wavelength.
- $n$ varies with wavelength, which complicates design of refractive systems.


## Refraction at a Plane Surface: The Fishtank Problem (1)

- Fishtank Setup
- Object Inside
- Viewer Outside
- Virtual Image

- Geometry

$$
\tan \theta=\frac{x}{s} \quad \tan \theta^{\prime}=\frac{x^{\prime}}{s^{\prime}}=\frac{x}{s^{\prime}}
$$

- Snell's Law (Small Angles)

$$
n \sin \theta \approx n \frac{x}{s} \quad n^{\prime} \sin \theta^{\prime} \approx n^{\prime} \frac{x}{s^{\prime}}
$$

- Refraction at a planar Interface

$$
\frac{n}{s}=\frac{n^{\prime}}{s^{\prime}}
$$

- Fishtank from Outside

$$
n=1.33 \quad n^{\prime}=1 \quad s^{\prime}=\frac{1}{1.33} s
$$

## The Fishtank Problem (2)

- Fishtank Setup
- Object Inside
- Viewer Outside
- Virtual Image

- Fishtank Paradox
- Physical Thickness $z=s$
- Geometric Thickness

$$
\ell_{g}=\frac{z}{n}
$$

- Optical Pathlength

$$
O P L=z n
$$

- Magnifications

$$
\begin{gathered}
m=\frac{x^{\prime}}{x}=1 \quad m_{\alpha}=\frac{n}{n^{\prime}} \\
m_{z}=\frac{d s^{\prime}}{d s}=\frac{n^{\prime}}{n}
\end{gathered}
$$

- Virtual, Upright, Distorted


## Practical Example


A. Planar Interface

B. Focusing in Air

C. Focusing in Skin

Focusing Depth Decreases, but $O P L$ Increases. e.g. Focus to $100 \mu \mathrm{~m}$ and image $75 \mu \mathrm{~m}$. Time Gate at $133 \mu \mathrm{~m}$ (Optical Coherence Tomography) Together, measure index and depth? 300 min

## Refraction: Curved Interface (1)



$$
\begin{aligned}
& \theta=\alpha+\gamma \text { from } \triangle S, P, R, \\
& \text { and }
\end{aligned}
$$

$$
\gamma=\theta^{\prime}+\beta \text { from } \triangle S^{\prime}, P, R
$$

$$
\tan \alpha=\frac{p}{s+\delta} \quad \tan \beta=\frac{p}{s^{\prime}-\delta} \quad \tan \gamma=\frac{p}{r-\delta}
$$

For Small Angles tan $?=\sin ?=?$ and $\delta \rightarrow 0$

$$
\begin{array}{rlrl}
\alpha & =\frac{p}{s} & \beta=\frac{p}{s^{\prime}} & \gamma \\
& =\frac{p}{r} \\
\theta & =\frac{p}{s}+\frac{p}{r} & & \theta^{\prime}=\frac{p}{r}-\frac{p}{s^{\prime}}
\end{array}
$$

## Refraction: Curved Interface (2)

- Previous Page...

$$
\theta=\frac{p}{s}+\frac{p}{r} \quad \theta^{\prime}=\frac{p}{r}-\frac{p}{s^{\prime}}
$$

- Snell's Law (Small Angles sin ? =?)

$$
\begin{aligned}
n \theta & =n^{\prime} \theta^{\prime} \\
\frac{n p}{s}+\frac{n p}{r} & =\frac{n^{\prime} p}{r}-\frac{n^{\prime} p}{s^{\prime}}
\end{aligned}
$$

$$
\frac{n}{s}+\frac{n^{\prime}}{s^{\prime}}=\frac{n^{\prime}-n}{r} \quad \text { (Refraction at a curved surface) }
$$

## Refraction: Curved Interface (3)

- Focal Lengths (More Complicated Now)
- Back Focal Length (Refraction at a curved surface)

$$
s \rightarrow \infty \quad B F L=f^{\prime}=s^{\prime}=\frac{n^{\prime} r}{n^{\prime}-n}
$$

- Front Focal Length

$$
s^{\prime} \rightarrow \infty \quad F F L=f=s=\frac{n r}{n^{\prime}-n}
$$

- Ratio (Calculated for this Example, but Much More General)

$$
\frac{f^{\prime}}{f}=\frac{n^{\prime}}{n}
$$

## Refracting Power

- Why? Because Refracting Power is Often Additive (Later)
- Definition

$$
P=\frac{n}{f}=\frac{n^{\prime}}{f^{\prime}}
$$

- Units

$$
\text { Diopter }=m^{-1}
$$

- Refraction at a Curved Interface

$$
P=\frac{n^{\prime}-n}{r}
$$

Q: What combinations of $n, n^{\prime}$, and $r$ yield positive (or negative) refracting power?
400min 17 Jan 2014

## Eyeglass Prescription

Ophthalmology


- In Hundreths of Diopters
- Near Values Add to Far
- Left Eye (Oculus Dexter) Far:
- +0.50 diopter $4^{\circ}$ from Horizontal
-     - 0.50 diopter $96^{\circ}$
- Left Eye Near (Add 1.75):
- 2.25 diopter $4^{\circ}$
- -1.25 diopter $96^{\circ}$
- Right Eye (Oculus Sinister) Far:
-0.25 diopter $-8^{\circ}$
- -0.75 diopter $82^{\circ}$
- Right Eye Near (Add 1.75):
- 2.00 diopter $-8^{\circ}$
- -1.00 diopter $82^{\circ}$


## Magnifications



Snell's Law at the Vertex

$$
m=-\frac{n s^{\prime}}{n^{\prime} s}
$$

$$
m_{\alpha}=\frac{-d \beta}{d \alpha}=-\frac{s^{\prime}}{s}=-\frac{n}{n^{\prime}} \frac{1}{m}
$$

$$
\frac{n}{s}+\frac{n^{\prime}}{s^{\prime}}=\frac{n^{\prime}-n}{r} \quad-\frac{n d s}{s^{2}}-\frac{n^{\prime} d s^{\prime}}{\left(s^{\prime}\right)^{2}}=0
$$

$$
\begin{gathered}
\frac{d s^{\prime}}{d s}=-\frac{n}{n^{\prime}}\left(\frac{s^{\prime}}{s^{2}}\right)^{2} \\
m_{z}=-\frac{n}{n^{\prime}} m^{2}
\end{gathered}
$$

## Imaging Equations

| Surface | $s^{\prime}$ | $m$ | $m_{\alpha}$ | $m_{z}$ | Image** | O* | D* | P* |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Planar Mirror | $s^{\prime}=-s$ | 1 | -1 | -1 | Virtual | Upright | No | Yes |
| Concave Mirror <br> $s>f$ | $\frac{1}{s^{\prime}}+\frac{1}{s}=\frac{1}{f}$ | $-s^{\prime} / s$ | $-m^{2}$ | $-1 / m$ | Real | Inverted | Yes | No |
| Convex Mirror | $\frac{1}{s^{\prime}}+\frac{1}{s}=\frac{1}{f}$ | $-s^{\prime} / s$ | $-m^{2}$ | $-1 / m$ | Virtual | Upright | Yes | Yes |
| Planar Refractor | $\frac{s}{n}=\frac{s^{\prime}}{n^{\prime}}$ | 1 | $\frac{n}{n^{\prime}}$ | $\frac{n^{\prime}}{n}$ | Virtual | Upright | Yes | No |
| Curved Refractor <br> $s>f$ | $\frac{n}{s}+\frac{n^{\prime}}{s^{\prime}}=\frac{n^{\prime}-n}{r}$ | $-\frac{n s^{\prime}}{n^{\prime}}$ | -1 | $-\frac{n}{n^{\prime}} m^{2}$ | Real | Inverted | Yes | Yes |

* "○" mean Orientation, "D" means Distortion, and "P" means Perversion of coordinates.
** The Image is Defined as Real or Virtual for a Real Object



## The Simple Lens



First Surface Object and Image


Second Surface Image


Second Surface Object


Complete Lens

## First Surface Solution



Note Subscript 1

## Second Surface Object



Virtual Object in this Case (Often but not Always)

## Second Surface Solution



$$
\frac{n_{2}}{s_{2}}+\frac{n_{2}^{\prime}}{s_{2}^{\prime}}=\frac{n_{2}^{\prime}-n_{2}}{r_{2}} \quad \frac{n_{1}^{\prime}}{d-s_{1}^{\prime}}+\frac{n_{2}^{\prime}}{s_{2}^{\prime}}=\frac{n_{2}^{\prime}-n_{1}^{\prime}}{r_{2}}
$$

## Sign Convention for Radius

- Our Convention
$-r>0$ for Convex Viewed from Source
- Direction Consistent within Drawings
- Easier for Computation
- Other Convention
$-r>0$ for Convex Viewed from Lower Index
-r Defines the Tool for Manufacture
- Sign of r Consistent with Optical Power
- In-Practice
- Check the Equations Carefully
- Provide Drawings to Vendors


## Complete Simple Lens (1)



## Complete Simple Lens (2)

$$
\frac{n_{2}^{\prime}}{s_{2}^{\prime}}=\frac{n_{2}^{\prime}-n_{1}^{\prime}}{r_{2}}-n_{1}^{\prime} \frac{n_{1}^{\prime}-n_{1}-r_{1} \frac{n_{1}}{s_{1}}}{d\left(n_{1}^{\prime}-n_{1}\right)-n_{1}^{\prime} r_{1}-d n_{1}^{\prime} r_{1} \frac{n_{1}}{s_{1}}}
$$

That's Ugly! Let's Define Some New Notation: $w$ from Object to First Vertex $w^{\prime}$ from Last Vertex to Image

$$
\begin{gathered}
w=s_{1} \quad w^{\prime}=s_{2}^{\prime} \\
n=n_{1} \quad n^{\prime}=n_{2}^{\prime} \quad n_{\ell}=n_{1}^{\prime}=n_{2} \\
\frac{n^{\prime}}{w^{\prime}}=\frac{n^{\prime}-n_{\ell}}{r_{2}}-n_{\ell} \frac{n_{\ell}-n-r_{1} \frac{n}{w}}{d\left(n_{\ell}-n\right)-n_{\ell} r_{1}-d n_{\ell} r_{1} \frac{n}{w}}
\end{gathered}
$$

## Complete Simple Lens (3)

$$
\frac{n^{\prime}}{w^{\prime}}=\frac{n^{\prime}-n_{\ell}}{r_{2}}-n_{\ell} \frac{n_{\ell}-n-r_{1} \frac{n}{w}}{d\left(n_{\ell}-n\right)-n_{\ell} r_{1}-d n_{\ell} r_{1} \frac{n}{w}}
$$

That's Still Ugly. Set $n=n^{\prime}=1$. Not General, but Useful.

$$
\frac{1}{w^{\prime}}=\frac{1-n_{\ell}}{r_{2}}-n_{\ell} \frac{n_{\ell}-1-r_{1} \frac{1}{w}}{d\left(n_{\ell}-1\right)-n_{\ell} r_{1}-d n_{\ell} \frac{r_{1}}{w}}
$$

Or Even Simpler, Set $d=0$.

$$
\begin{equation*}
\frac{n}{w}+\frac{n^{\prime}}{w^{\prime}}=\frac{n^{\prime}-n_{\ell}}{r_{2}}+\frac{n_{\ell}-n}{r_{1}} \tag{ThinLens}
\end{equation*}
$$

## The Thin Lens (1)

$$
\frac{n}{w}+\frac{n^{\prime}}{w^{\prime}}=\frac{n^{\prime}-n_{\ell}}{r_{2}}+\frac{n_{\ell}-n}{r_{1}}
$$

Now The $s$ vs. $w$ Distinction Doesn't Matter.

$$
\begin{gathered}
\frac{n}{s}+\frac{n^{\prime}}{s^{\prime}}=\frac{n^{\prime}-n_{\ell}}{r_{2}}+\frac{n_{\ell}-n}{r_{1}} \\
\frac{n}{s}+\frac{n^{\prime}}{s^{\prime}}=P_{1}+P_{2}=P
\end{gathered}
$$

Back and Front Focal Lengths

$$
\begin{gathered}
B F L=f^{\prime}=\frac{n^{\prime}}{P_{1}+P_{2}} \quad F F L=f=\frac{n}{P_{1}+P_{2}} \\
\text { where } \quad P_{1}=\frac{n_{\ell}-n}{r_{1}} \quad P_{2}=\frac{n^{\prime}-n_{\ell}}{r_{2}}
\end{gathered}
$$

## The Thin Lens (2)

$$
B F L=f^{\prime}=\frac{n^{\prime}}{P_{1}+P_{2}} \quad F F L=f=\frac{n}{P_{1}+P_{2}}
$$

Focal-Length Relationship (Generally True)

$$
\frac{f^{\prime}}{f}=\frac{n^{\prime}}{n}
$$

Specifically

$$
f=f^{\prime} \quad \text { if } \quad n=n^{\prime}
$$

And In Air (Probably the Most-Used Equation in Optics)

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

## The Thin Lens in Air

- The Lensmaker's Equation

$$
\frac{1}{f}=\frac{1}{f^{\prime}}=P_{1}+P_{2}=\left(n_{\ell}-1\right)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)
$$

- Be Careful About Signs (Biconvex Means $r_{1}>0$ and $r_{2}<0$ )

$$
P_{1}=\frac{n_{\ell}-1}{r_{1}} \quad P_{2}=\frac{n_{\ell}-1}{-r_{2}}
$$

- Powers Add for Thin Lenses


## The Thin Lens Magnification



Axial Magnification

$$
m_{z}=\frac{d s^{\prime}}{d s}=\frac{n}{n^{\prime}}\left(\frac{s^{\prime}}{s}\right)^{2}=\frac{n^{\prime}}{n} m^{2}
$$

## Thin Lens in Air: Summary

- Making The Lens (We Still Have Some Choices)

$$
\frac{1}{f}=\frac{1}{f^{\prime}}=P_{1}+P_{2}=\left(n_{\ell}-1\right)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)
$$

- Using the Lens

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \quad m=-\frac{s^{\prime}}{s}
$$

500min 21 Jan 2014 (JH)

## Eyeglass Prescription Revisited

| Ophthalmology |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Boston, MA 02215$M$ M IMARZ IO,CHARLES$M$ Sch |  |  |  |  |  | - Adding Powers <br> - Convex Front |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | Time_ |  |  | $30 / 12$ |  |
| Sign_----------- |  |  |  |  |  | - Concave Back |
|  |  |  |  |  |  | - Cylinder |
| FOR OISTANCE OD | SPHESICAL | CYLINDRICAL | ${ }^{\text {AxIS }}$ | PRISM | BA | - Many Options |
| Arar od | +75 |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | $+175$ |  |  |  |  |  |

## Lenses

## In-Practice

- If you just want to buy a lens, it may be enough to specify the focal length.
- There are infinite combinations of $r_{1}$ and $r_{2}$ that give the same focal length.
- See Ch. 5 to help decide which to use.
- For thin lenses, optical powers are additive.
- Thick lenses are more complicated. See Ch. 3.
- Rigorous use of Snell's Law is often used to undertand the details. See Ch. 5.


## Prisms (1)

$$
\begin{gathered}
\sin \theta_{1}^{\prime}=\frac{\sin \theta_{1}}{n} \quad \text { in Air } \\
\left(90^{\circ}-\theta_{2}\right)+\left(90^{\circ}-\theta_{1}^{\prime}\right)+\alpha=180^{\circ} \\
\theta_{2}+\theta_{1}^{\prime}=\alpha
\end{gathered}
$$

Applying Snell's Iaw,

$$
\sin \theta_{2}^{\prime}=n \sin \theta_{2}=n \sin \alpha-\theta_{1}^{\prime}
$$

$$
\sin \theta_{2}^{\prime}=n\left(\cos \theta_{1}^{\prime} \sin \alpha-n \sin \theta_{1}^{\prime} \cos \alpha\right)
$$

$$
\sin \theta_{2}^{\prime}=\sqrt{n^{2}-\sin ^{2} \theta_{1}} \sin \alpha-\sin \theta_{1}^{\prime} \cos \alpha
$$

Deviation

$$
\delta=\theta_{1}+\theta_{2}^{\prime}-\alpha
$$

Prisms (2)

- Deviation

$$
\delta=\theta_{1}+\theta_{2}^{\prime}-\alpha
$$

- Minimum Deviation

$$
\begin{aligned}
& \delta_{\min }=2 \sin ^{-1}\left(n \sin \frac{\alpha}{2}\right)-\alpha \\
& \text { at } \quad \theta_{1}=\sin ^{-1}\left(n \sin \frac{\alpha}{2}\right)
\end{aligned}
$$

- Small Prism Angles

$$
\begin{aligned}
& \delta_{\min } \approx(n-1) \alpha \\
& \text { at } \quad \theta_{1}=\frac{n \alpha}{2}
\end{aligned}
$$

## "Unfolding" Reflective Systems



Top Shows Actual System. Bottom Shows it Unfolded for Analysis

