Optics for Engineers Chapter 1

Charles A. DiMarzio
Northeastern University

Dec. 2013

Why Optics?

A. Liquid Water

B. Water Vapor

ELECTROMAGNETIC TRANSMISSION.
Water strongly absorbs most electromagnetic waves, with the exception of wavelengths near the visible spectrum (A, From Jackson Classical Electrodynamics, (c)1975). The atmosphere also absorbs most wavelengths, except for very long wavelengths and a few transmission bands (B, NASA's Earth Observatory).

Why Optics?

C. Mayhew \& R. Simmon (NASA/GSFC), NOAA/ NGDC, DMSP Digital Archive).

History of Optics (1)

History of Optics (2)

The First Laser?

"Laser, inter eximia naturae dona numeratum plurimis compositionibus inseritur*"
*"The laser is numbered among the most miraculous gifts of nature and lends itself to a variety of applications." Pliny, Natural History XXII, 49.

Laboratory Systems

Custom Design

Reflectance Confocal Microscope. This 405-nm, line-scanning reflectance confocal microscope includes a mixture of custom-designed components, commercial off-the-shelf mounting hardware, and a commercial microscope objective. (Photo by Gary Peterson of Memorial Sloan Kettering Cancer Center)

Maxwell's Equations

$$
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}
$$

Ampere's Equation
(No Currents)

Gauss' Equations

Constitutive Parameters

$$
\mathrm{D}=\varepsilon \mathrm{E}
$$

$$
\mathrm{B}=\mu \mathrm{H}
$$

Susceptibilities, χ

$$
\begin{gathered}
\mathbf{D}=\epsilon_{0}(1+\chi) \mathbf{E} \\
\mathbf{D}=\epsilon_{0} \mathbf{E}+\mathbf{P} \quad \mathbf{B}=\mu_{0}\left(1+\chi_{m}\right) \mathbf{H}=\mu_{0} \mathbf{H} \\
\mathbf{H}+\mathbf{M}=\mu_{0} \mathbf{H}
\end{gathered}
$$

with Polarizations defined by...

$$
\mathbf{P}=\epsilon_{0} \chi \mathbf{E} \quad \mathbf{M}=\mu_{0} \chi_{m} \mathbf{H}=0
$$

At optical frequencies ...

$$
\chi_{m}=0 \quad \text { so } \quad \mu=\mu_{0}
$$

Even magneto-optical effects are found in $\epsilon_{0} \chi$

Getting to the Wave Equation

In the case that ε is a scalar constant, ϵ,

$$
\nabla^{2} \mathbf{E}=\mu \epsilon \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}
$$

The Wave Equation

$$
\nabla^{2} \mathbf{E}=\mu \epsilon \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}
$$

One Solution

$$
\mathbf{E}=\hat{x} E_{0} e^{j(\omega t-n k z)}
$$

- Electric Field Direction: \hat{x}
- Propagation Direction: $\hat{\mathbf{z}}$
- Angular Frequency: $\omega=2 \pi \nu=2 \pi f$
- Wave vector Magnitude: $|n k|$ (Other Authors Differ)
- Speed of a Constant-Phase Point: $v=\frac{\omega}{n k}$

Substitute in Wave Equation

$$
-n^{2} k^{2} \mathbf{E}=-\mu \epsilon \omega^{2} \mathbf{E} \quad \text { so } \quad n^{2} k^{2}=\mu \epsilon \omega^{2}
$$

The Scalar Wave Equation

- Vector Wave Equation and a Solution

$$
\nabla^{2} \mathbf{E}=\mu \epsilon \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} \quad \mathbf{E}=\hat{x} E_{0} e^{j(\omega t-n k z)}
$$

- Vector Direction of \mathbf{E}
- May Change
- But Won't Until Chapter 6
- So Work With One Component
- Scalar Wave Equation (Often Useful)

$$
\nabla^{2} E=\mu \epsilon \frac{\partial^{2} E}{\partial t^{2}} \quad E=E_{0} e^{j(\omega t-n k z)}
$$

Waves in Space and Time

- Plane Wave

$$
\begin{aligned}
& n=1 \\
& \\
& \quad E=E_{0} e^{j(\omega t-k z)}
\end{aligned}
$$

- Wavelength
$\lambda=2 \pi / k$
Vertical Line
- Period
$T=2 \pi / \omega$
Horizontal Line
- Speed
$v=d z / d t$
Constant Phase

Wave Speed

- Speed of a Constant-Phase Point: $v=\frac{\omega}{n k}$
- Solution of Wave Equation

$$
n^{2} k^{2}=\mu \epsilon \omega^{2}
$$

- Wave Speed

$$
v=\frac{1}{\sqrt{\epsilon \mu}}
$$

- Vacuum Wave Speed

$$
c=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Index of Refraction

- Wave Speed

$$
v=\frac{1}{\sqrt{\epsilon \mu}}
$$

- Vacuum Wave Speed

$$
c=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}
$$

- Index of Refraction

$$
n=\frac{c}{v}
$$

$$
n=\sqrt{\frac{\epsilon \mu}{\epsilon_{0} \mu_{0}}}=\sqrt{\frac{\epsilon}{\epsilon_{0}}}
$$

Material	Approximate Index
Vacuum (also close for air)	1.00
Water (visible to NIR)	1.33
Glass	1.5
ZnSe (Infrared)	2.4
Germanium	4.0

Wavelength Convention

- Vacuum Wavelength: $\lambda=\frac{2 \pi}{k}$
- Wavelength in Medium: $\lambda_{\text {material }}=\frac{\lambda}{n}=\frac{2 \pi}{n k}$
- Vacuum Wave Vector Magnitude: $|k|=\frac{2 \pi}{\lambda}$
- Wave Vector in Medium: $k_{\text {material }}=n k$
- Frequency: $\nu=\frac{c}{\lambda}=\frac{v}{\lambda / n}$ (Remember that $n=\frac{c}{v}$)
- Frequency Does Not Change in Medium
- Many authors define λ and k in the medium and they often use λ_{0} for vacuum wavelength

Dispersion for Visible Light

- Dispersion

$$
\frac{d n}{d \lambda} \quad \text { or } \quad \frac{d n}{d \nu}
$$

- Abbe Number

$$
V_{d}=\frac{n_{d}-1}{n_{F}-n_{c}}
$$

n_{d} at $\lambda_{d}=587.6 \mathrm{~nm}$, yellow
n_{F} at $\lambda_{F}=486.1 \mathrm{~nm}$, blue
n_{c} at $\lambda_{c}=656.3 \mathrm{~nm}$, red

- Low $V_{d} \rightarrow$ High Dispersion
- Crown $\left(V_{d}>50\right)$
- Flint $\left(V_{d}>50\right)$

(Reprinted from Weber's CRC Handbook of
Laser Science and Technology, Supplement 2)

Index of Refraction Summary

Take-Away Messsge

- n Depends on Material
- Small Values, Limited Choices, Slight Variations
$-n \approx 1$ for Air
$-n \approx 1.33$ for Water
$-n \approx 1.5$ for Glass

Other Fields

$$
\mathbf{D}=\hat{x} D_{0} e^{j(\omega t-n k z)}
$$

$$
D_{0}=\epsilon E_{0}
$$

More generally:

$$
\mathrm{D}=\varepsilon \mathrm{E}
$$

$$
\mathbf{H}=\widehat{y} H_{0} e^{j(\omega t-n k z)}
$$

$$
\mathbf{B}=\widehat{y} B_{0} e^{j(\omega t-n k z)}
$$

Harmonic Functions:

$$
\begin{gathered}
\frac{\partial \mathbf{H}}{\partial t}=j \omega \mathbf{H} \\
-\mu j \omega \mathbf{H}=\nabla \times \mathbf{E}=j n k E_{0} \hat{y} \\
H_{0}=\frac{n}{\mu c} E_{0}=n \sqrt{\frac{\epsilon_{0}}{\mu_{0}}} E_{0} \\
\text { Impedance: } Z \text { or } \eta \\
E_{0}=H_{0} Z
\end{gathered}
$$

100min

Poynting Vector

- Equation

$$
\mathrm{S}=\mathrm{E} \times \mathrm{H}
$$

- Magnitude of S: Power per Unit Area
- Irradiance:

$$
I=\frac{d P}{d A_{\perp}}=|\mathbf{S}|
$$

- Direction of S: Propagation of Energy
- Notation Confusion
- Here I is used for Irradiance, E for Field
- In radiometry (Ch. 12) E is used for Irradiance, I for intensity (W/sr)
- The word "Intensity" is often misused for "irradiance," particularly in older literature

Circuits Analogy

$$
\begin{array}{lll}
V=I R & |\mathbf{E}|=|\mathbf{H}| Z & |\mathbf{E}|=|\mathbf{H}| \eta \\
P=I V & \mathbf{S}=\mathbf{E} \times \mathbf{H} & \\
& |\mathbf{S}|=|\mathbf{E}||\mathbf{H}| & \text { For Plane Wave }(\mathbf{E} \perp \mathbf{H}) \\
P=\frac{V^{2}}{R} & |\mathbf{S}|=\frac{|\mathrm{E}|^{2}}{Z} & \\
P=I^{2} R & |\mathbf{S}|=|\mathbf{H}|^{2} Z & \text { Not Often Used in Optics } \\
V \text { in Volts } & \mathbf{E} \text { in } \frac{\text { Volts }}{\text { meter }} & \\
I \text { in Amperes } & \mathbf{H} \text { in } \frac{\text { Amperes }}{\text { meter }} & \\
R \text { in Ohms } & Z \text { or } \eta \text { in Ohms } & \\
P \text { in Watts } & \mathbf{S} \text { in } \frac{\text { Watts }}{\text { meter }^{2}} & |\mathbf{S}| \text { is Irradiance }
\end{array}
$$

Irradiance

Equation: $\quad I=|\mathbf{S}|=\frac{|\mathrm{E}|^{2}}{Z}$
Often Used: $\quad I=|\mathrm{E}|^{2}$
Assumes Z is Constant
Is OK for Ratios under that Assumption
Provides Incorrect Relationship Between I and E, but ...
Fields can Never be Directly Measured
And Fields are Seldom of Interest Anyway
So Strange Units for Fields Seldom Cause Problems ...

But, When in Doubt, Do it the Right Way.

Wave Notation Conventions (1)

- Components of a Wave Traveling in $+z$ direction

$$
\begin{gathered}
\cos (\omega t-k z)=\frac{1}{2} e^{\sqrt{-1}(\omega t-k z)}+\frac{1}{2} e^{-\sqrt{-1}(\omega t-k z)}, \\
\sin (\omega t-k z)=\frac{1}{2 \sqrt{-1}} e^{\sqrt{-1}(\omega t-k z)}-\frac{1}{2 \sqrt{-1}} e^{-\sqrt{-1}(\omega t-k z)} .
\end{gathered}
$$

- Complex Representation of a Real Wave*

$$
\begin{gathered}
\mathbf{E}_{r}=\hat{\mathbf{x}} E_{0} e^{\sqrt{-1}(\omega t-k z)}+\hat{\mathbf{x}} E_{0}^{*} e^{-\sqrt{-1}(\omega t-k z)} \\
\mathbf{E}_{r}=\mathbf{E} e^{\sqrt{-1} \omega t}+\mathrm{E}^{*} e^{-\sqrt{-1} \omega t}
\end{gathered}
$$

- Positive Frequency Term Used in Linear Calculations

$$
\mathrm{E} e^{+j \omega t}
$$

Wave Notation Conventions (2)

- Positive Frequency Field Term: E
- Linear Calculations Using E
- Negative Frequency Term Assumed: E^{*}
- Real Field (As in Maxwell's Equations):

$$
\mathbf{E} e^{j \omega t}+\mathbf{E}^{*} e^{-j \omega t}
$$

- Use Real Field for Non-Linear Calculations
- Detectors
- Non-Linear Optics
- Any Time You Are Not Sure

Irradiance from Complex Field

From the Real Field

$$
|\mathbf{S}|=\frac{\left(\mathbf{E} e^{j \omega t}+\mathbf{E}^{*} e^{-j \omega t}\right)^{2}}{Z}=2 \frac{|\mathbf{E}|^{2}}{Z}
$$

The average irradiance over a cycle is half this value, so

$$
\langle | \mathbf{S}\left\rangle=\frac{|\mathbf{E}|^{2}}{Z}\right.
$$

* Error in Text

Wavelength, Frequency, Photons

Quantity	Equation	Typical Units	Example
Vacuum Wavelength	λ	nm or $\mu \mathrm{m}$	Green: 500nm
Frequency	$f=\nu=\frac{c}{\lambda}$	THz.	600 THz
Wave vector	$\|k\|=\frac{2 \pi}{\lambda}$		
Wavenumber*	$\tilde{\nu}=\frac{1}{\lambda}$	$\mathrm{~cm}^{-1}$	$20,000 \mathrm{~cm}^{-1}$
Photon Energy	$h \nu$	J	$4 \times 10^{-19} \mathrm{~J}$
**	$\frac{h \nu}{e}$	eV	2.5 eV
Photon Momentum	$\mathrm{p}=\frac{h \mathbf{k}}{2 \pi}$		$1.3 \times 10^{-27 \frac{\mathrm{~kg} \mathrm{~m}}{\mathrm{~s}}}$

* Used in Spectroscopy (proportional to energy)
** Electron Volts; Energy Units

Spectral Regions

Band	Low λ	High λ	Characteristics
Vacuum Ultraviolet	100 nm	300 nm	Requires vacuum for propaga- tion.
Ultraviolet C (UVC)	100 nm	280 nm	
Oxygen Absorption		280 nm	
Ultraviolet B (UVB)	280 nm	320 nm	Causes sunburn. Is partially blocked by glass.
Glass Transmission	350 nm	$2.5 \mu \mathrm{~m}$	
Ultraviolet A (UVA)	320 nm	400 nm	Is used in a "black light." Transmits through glass.
Visible Light	400 nm	710 nm	Is visible to humans, transmit- ted through glass, detected by silicon.
Near-Infrared (NIR)	750 nm	$1.1 \mu \mathrm{~m}$	Is transmitted through glass and biological tissue, is de- tected by silicon.
Si Band Edge	$1.2 \mu \mathrm{~m}$		Is not a sharp edge. Water Absorption Mid-Infrared$\quad 3 \mu \mathrm{~m}$
Far-Infrared (FIR)	$8 \mu \mathrm{~m}$	$\approx 14 \mu \mathrm{~m}$	Is not a sharp edge. Is transmitted by Zinc Selenide and Germanium.
Is used for thermal imaging. Is transmitted through ZnSe Ge, detected by HgCdTe etc.			

Spectral Regions

In-Practice

- Glass is Transparent in UVA, Visible, NIR
$-n \approx 1.5$
- Useful for Windows, Lenses, Prisms, etc.
- Silicon Absorbs at these Wavelengths
- Useful for Detectors
- Different Materials Requred in UVC, UVB, Mid- and Far-IR
- Normally Expensive Ones!

Photon Example

- Pulsed Laser
- Average Power: $P_{a v}=1 \mathrm{~W}$
- Pulse Repetition Frequency: $P R F=80 \mathrm{MHz}$
- Pulse Width: $\tau=100 f s$
- Wavelength: 800nm
- Questions
- Pulse Energy?
- Photons per Pulse?
- Peak Power?

Photon Example

- Pulsed Laser
- Average Power: $P_{a v}=1 \mathrm{~W}$
- Pulse Repetition Frequency: $P R F=80 \mathrm{MHz}$
- Pulse Width: $\tau=100 f s$
- Wavelength: 800nm
- Answers
- Pulse Energy: $Q=\frac{P_{a v}}{P R F}=12.5 \mathrm{~nJ}$
- Photons per Pulse: $N=\frac{Q}{h \nu}=\frac{Q \lambda}{h c}=5 \times 10^{10}$
- Peak Power: $P_{p k}=\frac{Q}{\tau}=\frac{P_{a v}}{\tau P R F}=125 \mathrm{~kW}$

Energy Levels in Materials

Fluorescence Raman Scattering

2-Photon-Excited Fluorescence

These show three different types of interaction of light with material. Solid horizontal lines are real states, and dashed lines are called "virtual states." More on these subjects later.

Q: Why do spectroscopists like energy units (cm^{-1} or eV) more than wavelength units?

Light at an Interface

Specular Behavior

Scattering and Diffuse Behavior
\qquad

In these interactions, energy of the photon is conserved.

Take-Away Messsge

Light at an interface has specular, diffuse, and retro-reflective behavior. We will mostly consider specular behavior until much later.

Light in a Material

Transmission
\& Absorption
(Colored
Glass)

Diffuse
Reflection
(Rusty Iron)

Transmission and Scattering (Milk and Water)

Diffuse and Specular Reflection (Floor)

Photon energy is still conserved. In absorption, a fraction of the photons is absorbed, but the photon energy is still unchanged.

Imaging Concepts

Wave Picture

Ray Picture

Eikonel Equation (1)

- A General Solution to the Wave Equation

$$
E=e^{a(\mathbf{r})} e^{j[k \ell(\mathbf{r})-\omega t]}=e^{a(\mathbf{r})} e^{j k[\ell(\mathbf{r})-c t]}
$$

- a Is Related to Amplitude
$-\ell$ is related to Phase
- Scalar Wave Equation

$$
\nabla^{2} E=-\omega^{2} \frac{n^{2}}{c^{2}} E \quad \omega=k c
$$

- Substitute:

$$
\begin{gathered}
\left\{\nabla^{2}(a+j k \ell)+[\nabla(a+j k \ell)]^{2}\right\} E=-n^{2} k^{2} E \\
\nabla^{2} a+j k \nabla^{2} \ell+(\nabla a)^{2}+2 j k \nabla a \nabla \ell-k^{2}(\nabla \ell)^{2}=-n^{2} k^{2}
\end{gathered}
$$

Eikonel Equation (2)

- Equation from Previous Page

$$
\nabla^{2} a+j k \nabla^{2} \ell+(\nabla a)^{2}+2 j k \nabla a \nabla \ell-k^{2}(\nabla \ell)^{2}=-n^{2} k^{2}
$$

- Divide by k^{2}

$$
\frac{\nabla^{2} a}{k^{2}}+j \frac{\nabla^{2} \ell}{k}+\frac{(\nabla a)^{2}}{k^{2}}+2 j \frac{\nabla a}{k} \nabla \ell-(\nabla \ell)^{2}=-n^{2}
$$

- Assume $\lambda \rightarrow 0$ (How Small?)

$$
\begin{array}{ll}
\frac{\nabla^{2} a}{k^{2}}=\frac{\lambda^{2} \nabla^{2} a}{4 \pi^{2}} \rightarrow 0 & \frac{(\nabla a)^{2}}{k^{2}}=\frac{(\lambda \nabla a)^{2}}{4 \pi^{2}} \rightarrow 0 \\
\frac{\nabla^{2} \ell}{k}=\frac{\lambda \nabla^{2} \ell}{2 \pi} \rightarrow 0 & \frac{\nabla a}{k} \nabla \ell=\frac{\lambda \nabla a \nabla \ell}{2 \pi} \rightarrow 0
\end{array}
$$

- Both a and ℓ vary on a size scale much larger than λ.

Eikonel Equation (3)

- Result: The Eikonel Equation

$$
|\nabla \ell|=n .
$$

- Optical Path Length: ℓ
- Physical Path Length: ℓ_{p}
- Index of Refraction: n

$$
\ell=O P L=\int_{A}^{B} n d \ell_{p}
$$

- Phase:

$$
\Delta \phi=k \Delta \ell=2 \pi \frac{O P L}{\lambda}
$$

Optical Path Length

Optical Path Length. The OPL between any two points is obtained by integrating along a path between those two points. The eikonal equation ensures that the integral does not depend on the path chosen. The phase difference between the two points can be computed from the OPL.

$$
\begin{array}{l|l|l}
& & \\
n_{1} & n_{2} & n_{3}\left(\begin{array}{l}
\\
n_{4}
\end{array}\right) \quad n_{5}
\end{array}
$$

Optical Path in Discrete Materials:

$$
O P L=\ell=\sum_{m} n_{m} \ell_{m}
$$

Optical Path in Water. The optical path is longer than the physical path, but the geometric path is shorter.
200min

Optical Path Length

Take-Away Messsge

The Eikonel Equation is very general and powerful. It can be used for complicated problems like gradient-index fibers and mirages and others beyond our scope here.

Most important here is the concept of Optical Path Length in discrete materials.

$$
O P L=\ell=\sum_{m} n_{m} \ell_{m}
$$

We will use it to understand refraction and thus prisms and Ienses, and later we will use it in interferometry (Ch. 10).

Gradient Index

- The Eikonel Equation

$$
|\nabla \ell|=n
$$

- Differentiate: Ray Equation (r Is Path of Light)

$$
\frac{d}{d \ell}\left[n(\mathbf{r}) \frac{d \mathbf{r}}{d \ell}\right]=\nabla n(\mathbf{r})
$$

- Changing the Ray Direction

$$
n(\mathbf{r}) \frac{d^{2} \mathbf{r}}{d \ell^{2}}=\nabla n(\mathbf{r})-\frac{d \mathbf{r}}{d \ell} \frac{d n(\mathbf{r})}{d \ell}
$$

- Useful for looming, mirage, gradient-index fiber, etc.

A Lens, Simply

$\sum_{m=1}^{3} n_{m} \ell_{m}=\ell_{1}+n_{\text {glass }} \ell_{2}+\ell_{3}$,

- Center of Lens
- Thick Glass
$O P L>P P L$
- Less Air, Low Index
- Edge of Lens
- Less Glass
- More Air
- All Paths Equal?
- Rays Arrive in Phase
- Point Is Imaged
- Object and Image are Said to be Conjugates

Fermat's Principle. Light travels the shortest optical path.

Imaging. All paths are Minimal, Points are conjugate; One is the Image of the Other.

What's to Come?

- Geometric Optics
- Ray Tracing (2)
- Matrix Optics (3)
- Stops \& Windows (4)
- Aberrations (5)
- Wave Phenomena
- Polarization (6)
- Interference (7)
- Diffraction (8)
* Fraunhofer
* Fresnel
* Gaussian Beams (9)
- Coherence (10)
- Spatial
- Temporal
- Fourier Optics (11)
- Coherent
- Incoherent
- Radiometry (12)
- Radiometry
- Photometry
- Color
- Detectors (13)
- Non-Linear Optics (14)

