Electronics
 EECE2412 - Fall 2009
 Final Exam with Solutions

Prof. Charles A. DiMarzio
Department of Electrical and Computer Engineering
Northeastern University

16 December 2009

1 BJT Amplifier

A BJT circuit is shown in Figure 1.1. The capacitor is large enough to be considered a short circuit in the AC model.

1.1 Transistor Pi Model

What is the value of the resistor in the Pi model, r_{π} ? Write the equation and evaluate.

$$
\begin{aligned}
r_{\pi} & =\beta \frac{V_{T}}{I_{C}^{(D C)}}=(\beta+1) \frac{V_{T}}{I_{E}^{(D C)}} \\
r_{\pi} & =(160+1) \frac{25 \times 10^{-3} V}{1 \times 10^{-3} A}
\end{aligned}
$$

ANSWER: 4025Ω.

r_{π}	4025Ω.

1.2 Early Effect

Compute r_{0}, the resistor associated with the Early Effect.

$$
\begin{equation*}
r_{0}=\frac{V_{A}}{I_{C}^{(D C)}} \approx \frac{V_{A}}{I_{e}^{(D C)}}=\frac{V_{A}}{I_{C}^{(D C)}}=125 \mathrm{k} \Omega \tag{1.1}
\end{equation*}
$$

| $r_{0} \mid 25 \mathrm{k} \Omega$ |
| :--- | :--- |

Figure 1.1: BJT circuit for Amplifier in Problem 1. The DC current is set at $I_{E}^{(D C)}=1 m A$, the transistor has a gain of $\beta=160$, and $R_{1}=4 k \Omega$. The Early Voltage is 125 V .

1.3 Transconductance

Compute g_{m}, the transconductance.

$$
\begin{equation*}
g_{m}=\frac{I_{C}^{(D C)}}{V_{T}}=\frac{1 m A}{25 m V}=0.04 A / V \tag{1.2}
\end{equation*}
$$

g_{m}	$0.04 \mathrm{~A} / \mathrm{V}$

1.4 AC Circuit

Draw the AC circuit using a Pi model for the transistor.
See Figure 1.2.

Figure 1.2: BJT Pi Model for Problem 1.

1.5 Voltage Gain

Write an equation for the voltage gain of the amplifier.

$$
\begin{equation*}
A_{V}=-g_{m}\left(r_{0}\left\|R_{1}\right\| R_{L}\right) \tag{1.3}
\end{equation*}
$$

1.6 Application

What is the open-circuit gain? What is the gain with a load matched to the output resistance?

$$
\begin{equation*}
A_{V o c}=-g_{m}\left(r_{0} \| R_{1}\right)=-155 \tag{1.4}
\end{equation*}
$$

With a matched load, it is half that, or

$$
\begin{equation*}
A_{V}=-g_{m}\left(r_{0}\left\|R_{1}\right\| R_{1}\right) \approx-78 \tag{1.5}
\end{equation*}
$$

$A_{\text {Voc }}$	-155
$A_{\text {vMatched }}$	-78

2 FET Amplifier

Consider the circuit in Figure 2.1. Here the transistor has the characteristics shown in Figure 2.2.

Figure 2.1: N-MOSFET Amplifier.

2.1 Bias

Find the bias point graphically, so that $I_{D}^{(D C)}=4 \mathrm{~mA}$. What is the DrainSource voltage?

$$
\begin{equation*}
V_{G S}=5 V \tag{2.1}
\end{equation*}
$$

From the voltage divider.
Therefore,
from the curves,

$$
\begin{equation*}
V_{D S}^{(D C)}=2 \mathrm{~V} . \tag{2.2}
\end{equation*}
$$

$V_{D S}^{(D C)}$	2 V

Figure 2.2: Curves for Transistors in the FET Amplifier. The output is at the connection between the drain and R3.

2.2 Transconductance

Compute the transconductance.

$$
\begin{equation*}
g_{m}=\frac{2 I_{D}^{(D C)}}{V_{G S}^{(D C)}-V_{T h r}} \tag{2.3}
\end{equation*}
$$

We need $V_{t h r}$, which, from the curves must be 3 Volts.

$$
\begin{equation*}
g_{m}=\frac{2 \times 4 \mathrm{~mA}}{5 V-3 V}=4 \times 10^{-3} \mathrm{~A} / \mathrm{V} \tag{2.4}
\end{equation*}
$$

$$
\begin{array}{|l|l||}
\hline \hline g_{m} & 4 \times 10^{-3} A / V \\
\hline \hline
\end{array}
$$

2.3 AC Circuit

Draw the AC circuit, using a Pi model for the transistor.
Usual with just the resistor R3.

2.4 Open-Circuit Voltage Gain

Compute the open-circuit voltage gain.

$$
\begin{equation*}
A_{V o c}=-g_{m} R_{3}=4 \times 10^{-3} A / V \times 10^{3} \Omega=-4 \tag{2.5}
\end{equation*}
$$

$$
\begin{array}{||l|l|}
\hline \hline A_{V o c} & -4 \\
\hline \hline
\end{array}
$$

3 2-Stage Amplifier

Consider the circuit in Figure 3.1.

Figure 3.1: Two-Stage FET Amplifier. The device parameters (also shown in the upper right of the figure), are $\mu_{n} C_{o x}=200 \mu \mathrm{~A} / \mathrm{V}^{2}$ for the n-channel devices, $\mu_{p} C_{o x}=80 \mu \mathrm{~A} / \mathrm{V}^{2}$ for the p -channel devices, $L=1 \mu \mathrm{~m}$ for all, $\lambda=0.05 \mathrm{~V}^{-1}$ for all, $V_{t h r}=1 \mathrm{~V}$ for all, $W(Q 1)=10 \mu \mathrm{~m}, W(Q 2)=10 \mu \mathrm{~m}$, $W(Q 3)=20 \mu \mathrm{~m}, W(Q 4)=3 W(Q 3), W(Q 5)=10 \mu \mathrm{~m}, W(Q 6)=4 W(Q 5)$, and $V_{D D}=10 \mathrm{~V}$.

3.1 Bias Currents

For parts 3.1 and 3.2, neglect channel length modulation $\left(\lambda=0\right.$ or $\left.V_{A} \rightarrow \infty\right)$
Find the bias currents Ibias1 and Ibias2 and verify that Q1 and Q2 are in saturation.

$$
\begin{align*}
& I_{\text {bias } 1}=3 I_{\text {ref }}=30 \mu \mathrm{~A} \tag{3.1}\\
& I_{\text {bias } 2}=4 I_{\text {ref }}=40 \mu \mathrm{~A} \tag{3.2}
\end{align*}
$$

Ibias1	$30 \mu \mathrm{~A}$
Ibias2	$40 \mu \mathrm{~A}$

3.2 Bias Voltage

For parts 3.1 and 3.2, neglect channel length modulation $\left(\lambda=0\right.$ or $\left.V_{A} \rightarrow \infty\right)$
Determine the bias voltage (VBias) on Q1.

$$
\begin{equation*}
I_{d}=\mu_{n} C_{o x} \frac{W}{L} \frac{\left(V_{g s}-V_{t h r}\right)^{2}}{2} \tag{3.3}
\end{equation*}
$$

Solve for $V_{g s}$

$$
\begin{gather*}
V_{g s}=\sqrt{2 I_{\text {bias } 1} \frac{L}{\mu_{n} C_{o x} W}}+V_{t}= \\
\sqrt{2 \times 30 \times 10^{-6} \mathrm{~A} \frac{1 \mu \mathrm{~m}}{10 \mu \mathrm{~m} \times 200 \times 10^{-6} \mathrm{~A} / \mathrm{V}^{2}}}+1 \mathrm{~V} \tag{3.4}
\end{gather*}
$$

Vbias	1.17 V

3.3 Small-Signal Parameters

Find $g_{m 1}, g_{m 2}, r_{o 1}, r_{o 2}$ and draw the small signal model for the two-stage amplifier. Don't forget the "Early" resistances of the current source transistors!

We use two different expressions for the transconductance, because it is hard to find $V_{G S}$ for the second amplifier. For the first one,

$$
\begin{equation*}
g_{m 1}=\mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{t h r}\right) \tag{3.5}
\end{equation*}
$$

and for the second

$$
\begin{gather*}
g_{m 2}=\sqrt{2 \mu_{n} C_{o x} \frac{W}{L} I_{D}} \tag{3.6}\\
r_{0}=\frac{1}{\lambda I_{D}} \tag{3.7}
\end{gather*}
$$

$g_{m 1}$	$346 \mu \mathrm{~A} / \mathrm{V}$
$g_{m 2}$	$400 \mu \mathrm{~A} / \mathrm{V}$
$r_{o 1}$	$667 \mathrm{k} \Omega$
$r_{o 2}$	$500 \mathrm{k} \Omega$

The small-signal circuit is shown in Figure 3.2. The two additional resistors (associated with the current sources, Q4 and Q6) are calculated from

$$
\begin{equation*}
r_{0}=\frac{1}{\lambda I_{D}} \tag{3.8}
\end{equation*}
$$

and are thus the same as those of the corresponding amplifier transistors.

Figure 3.2: Small-Signal Model for Two-Stage Amplifier

3.4 Performance

Find $A_{V o c 1}, A_{V o c 2}$, and the total voltage gain of the amplifier.

$$
\begin{gather*}
A_{v o c 1}=-g_{m 1}\left(r_{01} \| r_{01}\right)=-g_{m 1} \frac{r_{01}}{2} \tag{3.9}\\
V_{\text {in } 2}=V_{G S 2}+V_{o u t} \tag{3.10}\\
V_{\text {out }}=g_{m 2} V_{G S 2}\left(r_{02} \| r_{02}\right) \tag{3.11}\\
A_{V o c 2}=\frac{g_{m}}{g_{m}+\frac{2}{r_{02}}} \tag{3.12}
\end{gather*}
$$

$A_{\text {Voc } 1}$	-1.3×10^{6}
$A_{\text {Voc } 2}$	≈ 1

3.5 Analysis

What do you notice about the gain of the second stage (The common-drain stage)? Why is it beneficial in this circumstance?

The output stage is a common-drain amplifier. As we discussed in class, the gain is near unity, and the purpose of using it is the low output impedance. Specifically

$$
\begin{equation*}
R_{\text {out }}=\frac{1}{g_{m 2}+\frac{2}{r_{02}}} \approx g_{m 2} \tag{3.13}
\end{equation*}
$$

4 FET Logic

Consider the logic inverter shown in Figure 4.1, with the parameters shown in the caption.

4.1 Triode Equation

Write equations for i_{D} for the $\mathrm{P}-\mathrm{FET}$ in triode operation, as a function of the supply voltage, V_{1}, the input voltage, V_{2}, and the output voltage, $V_{\text {out }}$ at the location of the voltage marker in the figure.

$$
\begin{equation*}
i_{D}=\mu_{n} C_{o x} \frac{W}{L}\left[\left(V_{S G}-V_{T h r}\right) V_{S D}-\frac{1}{2} V_{S D}^{2}\right] \tag{4.1}
\end{equation*}
$$

$$
\begin{equation*}
i_{D}=\mu_{n} C_{o x} \frac{W}{L}\left[\left(V_{1}-V_{2}\right)\left(V_{1}-V_{\text {out }}\right)-\frac{1}{2}\left(V_{1}-V_{\text {out }}\right)^{2}\right] \tag{4.2}
\end{equation*}
$$

Figure 4.1: Circuit for the FET Inverter. Both transistors have thresholds of 0 Volts, and $\mu C_{o x} W / L=40 \mu \mathrm{~A} / \mathrm{V}^{2}$.

4.2 Saturation Equation

Write equations for i_{D} for the $\mathrm{N}-\mathrm{FET}$ in saturation, as a function of the supply voltage, V_{1} the input voltage, V_{2}, and the output voltage, $V_{\text {out }}$ at the location of the voltage marker in the figure. .

$$
\begin{equation*}
i_{D}=\mu_{n} C_{o x} \frac{W}{L} \frac{\left(V_{G S}-V_{T h r}\right)^{2}}{2} \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
i_{D}=\mu_{n} C_{o x} \frac{W}{L} \frac{V_{2}^{2}}{2} \tag{4.4}
\end{equation*}
$$

4.3 Solution

Let the input voltage be either $V_{2}=4.8 \mathrm{~V}$ or $V_{2}=0.2 \mathrm{~V}$. Solve the equations for the output voltage, $V_{\text {out }}$, and determine which of the two input voltages is appropriate for this situation.

Combine Equations 4.2 and 4.4.

$$
\begin{gather*}
\left(V_{1}-V_{2}\right)\left(V_{1}-V_{\text {out }}\right)-\frac{1}{2}\left(V_{1}-V_{\text {out }}\right)^{2}=\frac{V_{2}^{2}}{2} \tag{4.5}\\
V_{1}^{2}+V_{2} V_{\text {out }}-V_{1} V_{\text {out }}-V_{1} V_{2}-\frac{V_{1}^{2}}{2}+V_{1} V_{\text {out }}-\frac{V_{\text {out }}^{2}}{2}-\frac{V_{2}^{2}}{2}=0 \tag{4.6}\\
\frac{V_{1}^{2}}{2}+V_{2} V_{\text {out }}-V_{1} V_{2}-\frac{V_{\text {out }}^{2}}{2}-\frac{V_{2}^{2}}{2}=0 \tag{4.7}\\
V_{\text {out }}^{2}-2 V_{2} V_{\text {out }}-V_{1}^{2}+2 V_{1} V_{2}+V_{2}^{2}=0 \tag{4.8}
\end{gather*}
$$

In the quadratic equation, for $V_{2}=4.8 \mathrm{~V}$ or $V_{2}=0.2 \mathrm{~V}$

$$
\begin{gather*}
a=1 \tag{4.9}\\
b=-2 V_{2}(=-9.6,-0.4 \mathrm{~V}) \tag{4.10}\\
c=-V_{1}^{2}+2 V_{1} V_{2}+V_{2}^{2}\left(=46,-23 \mathrm{~V}^{2}\right) \tag{4.11}
\end{gather*}
$$

Then,

$$
\begin{equation*}
b^{2}-4 a c=\left(-92,92 \mathrm{~V}^{2}\right) \tag{4.12}
\end{equation*}
$$

The result must be positive. Therefore, the LOWER INPUT VOLTAGE is the correct one.

$$
\begin{equation*}
v_{\text {out }}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=4.99 \mathrm{~V} \tag{4.13}
\end{equation*}
$$

4.4 Power Consumption

Compute the current and the power consumed by the inverter in this condition.

Use Equation 4.4 to find the current

$$
\begin{equation*}
i_{D}=\mu_{n} C_{o x} \frac{W}{L} \frac{V_{2}^{2}}{2}=40 \times 10^{-6} \mathrm{~A} / \mathrm{V}^{2} \frac{0.262}{2}=8 \times 10^{-7} \mathrm{~A} \tag{4.14}
\end{equation*}
$$

The current passes through both transistors, so the total voltage drop is V_{1}, so

$$
\begin{equation*}
P=i_{D} \times V_{1}=4 \times 10^{-6} \mathrm{~W} \tag{4.15}
\end{equation*}
$$

Current	$8 \times 10^{-7} \mathrm{~A}$
Power	$4 \times 10^{-6} \mathrm{~W}$

