- Chapter 4

The Properties and Applications of
Operatlonal Amplifiers

4.1 Case Study: Analég Computation
4.2 Operational Amplifier Characteristics: What properties of operational amplifiers make them
so valuable as circuit elements?

4.3 The Ideal Operational Amplifier: Idealizing operational amphﬂer characteristics facilitates
design and analysis.

44 [Inverting and Non-inverting Stages These are the basic operational amplifier bulldmg blocks.

4.5 Difference and Summing Circuits: These circnits are used to process multiple signals.

4.6 Integrators and Differentiators: Electronic “calculus” is accomplished by operatmnal am-
plifier circuits that integrate and differentiate time functions.

4.7 Log and Antilog Circuits: Operational amplifiers that generate y = ¢” and z = Iny are
used for signal compression and reconstruction.

4.8 Analog Multiplier Applications: The use of analog multipliers and operatmnal amplifiers
to perform multiplication, division, roots, and powers completes the basm mathemnatical
operations.

4.9 Operational Amplifier Models for SPICE: We develop a SPICE circuit model that approxi-
mates an ideal Op-amp.

The operational amplifier is an integrated circuit (IC) designed to provide voltage-controlled voltage sources.
This very high-gain amplifier is the basic linear IC building block and many manufacturers fabricate as many
as four identical units on a single chip. As a circuit element the.operational amplifier or simply Op-amp is
ubiquitous with applications in communication, control, instrumentation and data-conversion systems.

The name operational amplifier was coined by John R. Ragazzini® because of its ability to perform mathemat-
ical operations. Our objective in this chapter is to describe the Op-amp as a circuit element and introduce
some of its basic applications. In addition, at the end of the chapter we introduce the analog multiplier. Used
in con]unctmn with operational amplifiers, the range of application is significantly expanded.

1Iohn R. Ragazzini, one of the author's mentors, was one of the pioneers of modern control systems both as a practitioner
and teacher. During World War II he recognized that communication between a pilot and the airport tower constituted a
control system. This was fundamental to the development of instrument landing systems. He was also ane of the leadmg
advocates for embedding computers within control systems.
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4.1 Case Study: Analog Computation

How are the following characterized and determined?

*1.. The velocity of the Mars capsule carrying the rover Curiosity after its parachute deployed.
2. The blood alcohol level after a beer or two. '

3. The impact of monetary, political and environmental factors on the change in value of finan-
cial instruments.

4. The speed and amplitude of a pulse as it is transmitted along a nerve from the source of the
stimulus to the brain.

. The response of the tuning circuit of a car’s FM radio to a given station and one adjacent to it.
. The vibration of an automobile after it hits a bump.
. The diffusion of a metal into a semiconductor or another metal.

. The pressure and volume of blood in an occluded coronary artery. -

WO N oov !

The variation in the temperature of a teaspoon’s handle when its bow is inserted into hot
coffee. '

10. The speed with which chemicals can combine in pharmaceutical processes.

The common denominator of the above is that they all are characterized by one or a system of
differential equations. A question arises “ Can we solve these equations electronically?” Clearly
the answer is “yes”, otherwise this exercise is irrelevant. Both analog and digital computers can
solve differential equations with digital solutions overwhelmingly prevalent today. In the past
Acey Deucy Electronics manufactured a desk top analog computer similar to the one displayed in
Fig. 4.1. Acey Deucy’s computer was capable solving eighth-order differential equations and sets
of simultaneous equations containing eight unknowns. While such desk tops are now relics, the
cireuits and techniques employed are widely used in current systems. Let us now investigate how
analog computers solved differential equations.

' Analog computers are comprised of circuits called integrators, amplzﬁers summers, and function gen-
erators. Anintegrator produces and output :

—-% fot‘f('r)d'r

The amplifier’s function is to scale its input by a constant, either positive or negative. The summer
adds all of its inputs algebraically. The summer’s output is expressible as

g{z) =a111 + asze + ... 4 anln

where the a; are constants and the z; are the inputs. The laboratory instrument you use to obtain
sine, square and triangular waveforms or a variety of frequencies and amplitudes is a function
generator. The one in an arialog computer is more complex as its output can approximate a large
variety of mathematical waveforms.

Programming an analog computer requires connecting the various circuits to match the differential
equation. Consider the second-order equation

d?z dz
dt2 4 Q1 ——

o +az = £() @
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Recasting (1) results in

d*z dz ' :

E=_a1d_t_a°x+‘f(t} - (2)
- The program, i.e. the circuit connection, by which (2) is solved is shown in Fig. 4-2. As expected we
must integrate d?z/dt? twice to obtain z(¢). The output of Integrator I is scaled by Amplifier I to
‘give —adz/dt which is both the input to Integrator I and one input to the Summer. Amplifier II
scales the output of Integrator II to produce z(t) which is both the result and the input to Amplifier
IIL. The output of Amplifier Ill is —agz the second Summer input, The functon generator output is
#(z), the third Summer input whose output is d%z/dt? in (2) and is the input to Integrator L

Less hardware.was used to solve for z(#) than is used in a digital computer solution. Why is the
digital computer universal and analog ones passe? A major reason is the answer to the following
question: “What must we do to solve for z(t} again with new values of a; and a¢?” In the analog
domain we need to change the hardware whereas we change the software in the digital computer.

The circuits used in an analog computer are still used in practice. Present day IC technology allows
for the fabrication of both analog and digital circuits on a single chip. Thus, operations better done
using digital (analog) techniques are performed in the digital (analog) domain.

. All the circuits used in the analog computer plus the digital-to-analog (DAC) and analog-to-digital
{ADC) converters employ operational amplifiers the major subject of this chapter. The case study
that opens the next séction is the design of a practical operational amplifier and several of the issues
that face the engineers responsible.

4.2 Operational Amplifier Characteristics

The circuit symbol of an Op-amp is shown in Fig. 4.3a. Two inputs v; and v, can be accommodated
and v, is the single output; each of these voltages is measured with respect to ground, the common
reference node in the circuit. Figure 4.3b displays the equivalent circuit of the practical Op-amp as
a four-terminal device. We observe that the strength of the dependent source is proportional to the
difference voltage v as expressed in Eq. 4.1. Because of the

Ve=U1— V2 4.1)

polarity of the controlled source, v, is proportional to —Ayva. The minus and plus signs at the Op-
amp input in Fig. 4.3a refer to the inverting and non-inverting terminals. That is, if vp = 0, va = v
and v, is proportional to the —A4,v;. Thus, v, is 180° out of phase {inverted) with respect to v;.
Similarly, if v; = 0, vg = —vz and v, is proportional to +A,v; and the input and output are in phase
{non-inverted). . '

Usually two constant supplies, one positive and one negative, are used to bias the Op-amp and
connections to them are indicated by the dashed lines in Fig. 4.3a. Implied by this representation
is that the second terminal of the bias source is connected to ground. Thus, the terminal labeled
 +Vhias1{—Vhias2) signifies connection to a positive (negative) supply with the negative (positive)
supply terminal grounded. This is illustrated in Fig. 4.4. Note that these bias sources do not appear
in the model in Fig. 4.3b. The equivalent circuit is used only to relate the output and input signals.
It is assumed that the Op-amp operates on the linear segment of its voltage transfer characteristic
(VTC) with the output range limited by the bias supplies. This is indicated in the VIC in Fig. 4.5
where the maximum positive and negative values of v, are limited by +Vjias1 and —Vyigen. The
Op-amp is said to be saturated once the bias supplies limit v,. That is, for vg > va, Vo = —Vhias2
and for |vg| > vB, Vo= +Vhias1- Along the horizontal portions of the VTC, v, is not proportional
to vy and operation is non-linear. Observe that vy > 0 (v1 > vp) causes ¥, < 0 and visa versa
indicating the inverting and non-inverting behavior of v, relative to vs. Along the linear segment
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of the VTC the magnitude of the slope is the value of A, which is called the open-loop gain. In
commercial Op-amps, A, is usually specified in volts per millivolt (V/mV) with A, > 50V/mV
typical. Since an Op-amp is a voltage-controlled voltage source we expect R; to be “large” and
R, to be "small”. Common ranges for these quantities in commercially available Op-amps are
1MQ < R; < 108MQ and 250 < R, < 2500. Consequently, we expect currents entering the + and
- inputs to be extremely small (from fractions of pA to a few tens of nA). Similarly, the expected
voltage drpp across the low-valued R, is very small compared to A,vg.

The following examples‘illustrate the effect of the non-ideal nature of this voltage-controlled volt-
‘age source.

Example 4.1

The Op-amp stage in Fig. 46 has 4, = 100V/mV (10°), R; = o0, Ro = 0, R; = 1kQ and B, =
10k, Evaluate Ay = v,/v,. -

Solution: The equivalent circuit of the stage, based on the model in Fig. 4.3b is displayed in Fig. 4.7.
Note that external elements are drawn in black and the Op-amp equivalent is drawn in blue.
Vo = —Aytg ey

In a clockwise direction
vg = iRy + 1, . (2}

Substitution of (1) into (2), combining terms and solving for [ yields

- va(l + Ay)
1= R N (3)
In a counter-clockwise direction
Vg = —iR; + v
from which
i= (vs — va)/Ry (4)
Equating (3) and (4} and solving for vq4 gives
Vg Rz'f.}s (5)

T Ro+ (1+4)R:
Substitution of (5) and (1) and forming Ay = v,/v; results in

—Ro A,

Ay = — 2
VS R+ U+ AR

Use of the given numerical values and carrying the results to four significant figures givés

Ay =-9.999

Example 4.2

Repeat Ex. 4.1 except B; = 5 MQ.

[
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Solution: The model for the stage is shown in Fig. 4.8a. Obtaining a Thévenin equivalent for the
portion of the circuit to the left of X-X results in the circuit depicted in Fig. 4.8b where

R R;
B+ R;

Comparison of Figs. 4.8b and 4.7 indicate they are the same. Thus, from (5) in Ex. 4.1,

_ BaVry - | Re N Rivs
R+ (1-+Ay)Rry R+ [(1+A)RiR;/(Ri+ Ri)]  Ri+ R

Vrw = -—Ri-—_t‘s Rrg = Ry||Ri =

Ud

Evaluating v, yields ‘
vg = 0.9990 x 10~ 4y,

Ay = —10° % 0.9990 x 10~% and [Ay = —9.090

Note that this result deviates from that in Ex. 4.1 by less than (.1 percent.

resulting in

Example 4.3

‘Repeat Ex. 4.1 except R, = 1002

Solution: Figure 4.9 is the equivalent circuit of the stage. The output is

Vo = iRy — AyUg : L
KVL for the loop is - :
_ —vs + 1Ry + iRy + iRy — Ayvs =0 )
In a counter-clockwise direction
vg = —Ryi + v : ' (3)

Substitution of (3) into {2) and solving for ¢ yields

i vs{1+ Ay)
Ri{l+A4)+ R+ R,

(4)

Use of (4) in conjunction with (3) gives vy, after combining like terms, as

(R2 + Ro)'us
Ri(l < Ay) + By + Ro

Vg =

Substitution of (4) and (5) in (1) and solving for Ay = v,/v, results in -

—AyRy+ R,

Ay =
VT Ri(1+ A.) + Ra + Ro

(6)

Evaluating (6) using the given nuumerical values yields

106 x 10 + 107
= d
A = FAr 0 st 1 4 [Av=999

To four significant figures this result does not differ from Ay in Ex. 4.1.




82 ' Chapter 4. The Properties and Applications of Operational Amplifiers

Example 4.4

We now consider the Op-amp stage in Fig. 4.6 having the following parameters: A, = 10°, R; =
5M and R, = 1001, The external elements are: v; = 1.0V, By = 1k{}, and Ry = 10kQ2. Evaluate
v,, the gain of the stage Ay = vs/v; and vg.

Solution: First we construct an equivalent circuit of the stage using the model of the Op-amp of
Fig. 4.3b. This is displayed in Fig. 4.10a in which the real, external elements are drawn in black
while the elements of the model are drawn in blue. By evaluating vg initially, we can evaluate all of
the desired quantities. To accomplish this we convert v, in series with R; and A,vg4 in series with
R, + Ry to their Norton equivalents depicted in Fig. 4.10b. The XCL equation at node vg is

(Vs Vd U, Ava_ _
B TR TR RAR Rrm 0 W
Combining like terms allows (1) to be rewritten as
1
1 + (A+A)] _ vs @)

“|B TR Ro+Rs] BEi
Solving for vy yields, after some algebra,

_ Ri(Rs + Ra)vs (3
S Em TR Bt Bt A AR O

vd

Evaluating vg results in

v 5% 105(0.1 x 103 4+ 10 x 10%) x 1.0
7 [10% + 5 x 108)(0.1 x 103 + 10 x 10%) + (1 + 105) x 103 x 5 x 106

from which _

We can rewrite the KCL equation at node vy as

Vd = Vs 'U_d Ud — Vg
R R, - Ry
Solving for v, after combining like terms and multiplying through by R; gives

_. |Re Re| . Ra
vrwﬁ&+RJ 2o

=0 (4

Substitution of values results in

1.0

10x 108 10x10%] 10x 108
— -6 _ ‘
1y = 101 x 10 [5)(106 + 108 ] 163 X

from which, to four significant figures,

Vo = —9.999V
Ay =2 = 'i‘?]gg and [Ay = —9.999

Vs

The gain Ay is then




4.2, Operational Amplifier Characteristics 83

The numerical values of the Op-amp parameters in Ex. 4.4 are typical of those commercially avail-

able. Inspection of these values make is obvious that A, >> 1and R; is much larger than any other

resistance in the circuit. If we make those approximations in (3) and (5), we could obtain the same
values to three and perhaps four significant figures.

Example 4.5

Determine Ay for the circuit of Fig, 4.6 for the following parameter values: Ay = 5x10% R; = 1MQ
and R, = 20002. The values of v,, R; and R are given in Ex. 4.4,

’

Solution: We have selected “worst-case” parameter values. That is A, and R; are significantly
lower while R, is at its largest extreme. We will evaluate Ay to four significant figures to highlight
the difference between this value and the one obtfained in Ex. 44. Again, we use (3) and (5) in
Ex. 4.4, After substitution of values .

108(0.2 x 10% + 10 x 103} x 1.0

vd = (103 + 106)(0 2x103+10x 103) + (1 +5% 104)103 % 106 0204mV
10*  10] 10t
U = 0.204 x 10 - 3) [ia'g + ﬁ] ~ % x 1.0 = —9.998V
Ay == _2'298 and  [4v = —9.998
g .

The result in Ex. 4.5 nearly identical to that in Ex. 4.4. The parameter values in Ex. 4.5 differ by
at least 50% from those in Ex. 4.4. Yet despite such gross changes, the Ay values differ by only
one part per 10%. Indeed, to three significant figures Ay = —10.0. The underlying reason for such
precision is feedback?. Feedback is a self-regulating process that is ubiquitous in both the natural
and man-made worlds. Itis what maintains our body temperature at a nominal 37°C, it is the basis
of what we refer to as the “balance of nature”, it helps us drive our automobiles at constant speed
and is the mechanism by which the radar antenna at an airport rotates at constant angular velocity.

To illustrate the feedback process, consider driving a car at constant speed on a level road. (No
cruise control is allowed!) The speed of the car is proportional to the displacement of the accelerator
‘pedal from its rest position. Once in motion the driver samples the speedometer. If the speed is too
high or too low, the driver adjusts the position of the accelerator petal appropriately. At the desired
speed, no adjustments are needed. Notice that to regulate the speed, the driver needs to know
what the speed is, otherwise no correction is possible. In essence, the output (the speed) depends,
in part, on the value of the output. This paradoxical statement is a key feature of feedback systems. -

?Harold Black's inspiration for his invention/discovery of the feedback ampiifier came on the ferry he boarded in Wee-
hauken, NJ and terminated not far from where he worked at Bell Telephone Laboratories on West Street in Manhattan's
Greenwich Village. His initial derivations and calculations were done on a blank portion of a page in the New York Times.
Distortion and performance variations introduced by manufacturing tolerances were significant problems facing the engi-
neers designing long distance telephone systems in 1927, Their difficulties were compounded because the vacuum tubes
used (the controlled sources of the peried) did not always provide sufficient gain and often had unacceptable urnit-to-unit
variation. Bacause the.benefits of feedback required a gain reduction, as we observed with 4, = 10° and |Ay| = 10in
Ex. 4.4, colleagues reaction could not have been worse. This reaction culminated when Dr. Amold, the director of Bell
Labs, forbade Black from continuing his work on feedback. Fortunately, Harry Nyguist and Hendryk Bode {proncunced
Bé-deh), two of ECE's icons, saw sufficient merit in the concept to warrant further investigation. Working with Black they
demonstrated feedback’s efficacy both experimentally and theoretically. Since then a case could be made that the myriad of
new circuits developed in the 1930s and 1940s violated Black’s extensive patent disclosure on the use of feedback.
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The same process exists in the Op-amp stage in Fig. 4.10. To simplify our discussion let us assume
R, = 0 which makes v, = —Ayvq. (See Fig. 4.8a and Ex. 4.2) But vy = iy R; and iy = i) — 43 where
ip = (vg — 'uo) /Rg and iy = (vs — va)/ R1. Since v, is phase inverted, i.e., a positive v, produces a
negative v,, we can express in a5 )
_ Vg + |'Uo|
==%

Thus, as |v,| tends to become larger (smaller) than a desired value, 43 increases {decreases) caus-
ing in to decrease (increase). Consequently vy decreases (increases) and |v,| decreases (increases)
towards its desired value illustrating the self-regulation of the circuit. Feedback, in modern ECE,
is what allows us to build systems having precision performance with imprecise components that
display +£10% and often higher variations. How many of us would purchase an automobile if most
of the 5,000 or so parts such as doors and axles had £10% tolerance?

(4.2)

4.3 The Ideal Operational Amplifier

The VTC of a 741-type Op-amp® biased by 15V sources is displayed in Fig. 4.11a. Note the v, and

g are plotted in volts and millivolts, respectively. The open-loop gain 4, is the magnitude of the

slope in the linear portion of the VIC and is 4, = |(15 —0)/(0-0.75){ and A, = ZOOV/mV = 200, 000.

Let us replot Fig. 4.11a with both v, and vg given in volts. The resultant VTC is shown in Flg 4.11b

for which it appears that A, is infinite and vy = 0. A consequence of vg = 0 is that v; = vs, i.e,, the

voltages at the inverting and non-mvertmg terminals are equal. It is important to remember that
although 4, — co, the output remains finite and it limited by the supply voltages®,

In the previous section we demonstrated that the veoltage drop across R, is a small fraction of v,.
Thus, if we assume R, = 0, the effect on v, is negligible. Two consequences arise because R; is
very large and significantly larger than any other resistance used. First is that the current in R; is
very small and negligible compared to the currents in the external elements. Since R; is connected
‘between the inverting and non-inverting terminals, the current entering those terminals is also
negligible. Second, the series combination of any resistance in the stage and R; is essentially R;
while the parallel combination with R; is the other resistance. Why?

The statements in the two prior paragraphs lead to an idealization of physical Op-amps. This ideal
Op-amp simplifies the analysis of circuits containing real Op-amps and provides accurate results
that are extremely useful in design. To distinguish ideal Op-amps from real ones, the inside of the
triangular circuit symbol is shaded as depicted in Fig. 4.12. This differentiation is used throughout
the text. The properties of the ideal Op-amp are summarized as follows:

(1) The open-loop gain A, is infinite;

{2) The difference voltage vg = 0 so that v, = vs. :

(3) The input resistance R; is infinite (an open circuit) resulting in iy = ip = 0.

{4) The output resistance R, = 0.

(5) The output voltage v, is finite.
In the next section we introduce two basic Op-amp stages which demonstrate how the properties
of ideal Op-amps are used in analysis and design.

3The 741-type is among the most widely used Op-amps since its introduction in the late 1960s. Currently, several manu-
facturers fabricate 741-type Op-amps.
4In practice, the limiting voltages are often slightly less than the supply voltages.
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4.4 Inverting and Non-Inverting Amplifiers

The circuit in Fig. 4.13 is an inverting amplifier stage utilizing an ideal Op-amp.. Since iy = 0,
{property 3), KCL at the junction of B; and R; yields ¢} = 45, Withvg =0 (property 2),

v —0 o

i1 R "R 4.3)
. _O0-v v, _ ‘
g = R - R . 4.4)
Equating 7, and 43 and solving for the gain Ay = v,/v, resulis in
Yo Ra |
Ay=To_ 2 .
iy ) 4.5)

Two important observations arise from Eq. 4.5. The first is that Ay depends only on the resistance
ratio. In the fabrication of ICs, resistance ratios can be controlled with greater precision than the
values of individual resisitances®. Secondly, Ay depends on element values that are external to
the amplifying device. Thus, the circuit designer can achieve the gain and precision required by
controlling the resistances used.

‘Example 4.6

The circuit in Fig. 4.13 is designed with R, = 1k2 and R, = 10k

(a) Evaluate the gain Ay.
{b) Forwv, = 100mV, determine v,, 4, and 4.
(c) Compare the results in (a} and (b) with those in Ex. 4.4b.

Solution:
(a) From Eq. 4.5

(b} From, Ay = v,/vs,

v, = Ayve = —10 x 0.1 = —1.0V
Use of Egs. 4.3 and 4.4 yiéld

100mV [ S
h=—qn ~ 100k 2= 700

= 100pA

(¢} In Ex. 4.4, the corresponding values are: Ay = —9.999, v, = —0.9999V as given, i1 =
iz = 99.99uA. The results using the ideal and typical non-ideal Op-amps differ by one
partin 104, i.e., by 0.01%. Clearly, analysis and design with the ideal Op-amps is sunpler,
more efficient and gives accurate results. |

SThe ratio of discrete resistors is limited by the manufacturing aceuracy of the individual resistances. Thus, for +5%
tolerances, R; / Rz has a worst-case deviation of £-10%. Far an IC this ratio is often less than 1%.



86 Chapter 4. The Properties and Applications of Operafional Amplifiers

Example 4.7

Desigﬁ an inverting amplifier stage that provides 1.0V output for a 25mV input. The current in R
and Ry cannot exceed 50114 and the largest allowable resistance value is 30k,
Solution: The required resistance ratio from Eq. 4.5 is

10V Ry Ry
A T

Vo
Us

[Av| =

If we choose Ry = 30k(}, the largest permissible value R; = g%ﬁ = 0,75k, The current in R, is,
using Eq. 4.3

_ 25mV
. T 0.75k8 .
Since 7 = 13, these resistance values satisfy the current specification. Alternatively, we can select
R to satisfy the maximum current allowed. Thus, from Eq. 4.3,

i = 33.3u4

25mV

1 = —— = 0.5k} which makes Ry = 40 x 0.5k} = 20k
50uA :

The design will satisfy all the specifications provided Ra/R; = 40 and

[0.5k0 < By < 0.75kQ| [ 20k0 < R, < 30KD

" The designer in Ex. 4.7 must select Ry and Rs from a range of allowable values. Other performance
and fabrication factors nsually influence the values used. For example, if we wish to minimize
power dissipation in R; and Ry we select the largest values possible. Power is i3 (R, -+ Rg) as i1 = 4a;

* larger resistance values cause i3 to decrease faster than (R, + Rp) increases. In IC design, chip area

is often at a premium. The area needed to fabricate a resistor is proportional to the resistance value.

Thus, if power is not as critical a factor, the choice is the smallest resistance values.

The Op-amyp in Fig. 4.14a is used in a non-inverting amplifier stage. An alternate schematic for
Fig. 4.14a is displayed in Fig. 4.14b. Analyzing the circuit in Fig. 4.14a, we observe that for vz = 0
(property 2), the voltage at nede N must be equal to v,. Then,

i = -l”{il (4.6)

Up ~ Vs

= =g _ (47)
Since iy = 0 (property 3), KCL requires 4; = iz or

Ys W Vs

(4.8)

Solving Eq. 4.8 for v, /v, yields
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Equation 4.9 indicates that Ay depends on the resistance ratio. Thus, the gains of both the non-
inverting and inverting stages depend only on Ry/R;.

Example 4.8

Design the amplifier in Ex 4.7 as a non-inverting stage.
Solution: From Ex. 47, Ay = 40 and use of Eq. 4.9 gives

40—1+£or%=39

Selecting Ry = 30k results in Ry = 3% = 0.769kQ, From Eq. 46, i1 = s = 32.5u4
which easily satisfies the allowable current requirement. If we choose R; to just meet the maximum
current, then

25mV 25mV

i or R = m‘ = 0.5k} Rs =39 x 0.5 = 19.5k1

iy = 50pA =

Therefore, provided Ry /R; = 39, the ranges are

[0.5kQ < Ry < 0.760k| {195k < Ry < 30k

If Ry = 0in Fig. 4.14a, use of Eq. 4.9 results in Ay = 1 and F; is unnecessary. Shown in Fig. 4,15,
this stage is called a voltage -follower or unity-gain buffer. With infinite input resistance, zero output
resistance and unity gain, the voltagé-follower’s performance is similar to the emitter-follower
described in Exs. 3.19 and 3.20 in Sec. 3.5. Amplifiers must operate linearly if they are to faithfully
reproduce the input signal. Consequently, the saturation values of v, limit the input voltage range
that can be accommodated in'an Op-amp stage. For- the inverting stage, :

Vbias1 < < __Vbzasz (a) (4-10)
Ay
and for non-inverting stages
Vbias2 Vhias1
_ass e, g ast
Ay ~— Vs = Ay (b)

Example 4.9

An Op-amp is biased with £10V supplies and uses Ry = 1.5kQ2 and Ry = 6.0k{2. What range of
input signals can be processed linearly in an

(a) iiwerting stage and
(b) a non-inverting stage?

Solution:
{a) Foran ihverting stage Ay = —Ra/R; so that Ay = —6.0k§}/1.5kQ2 = —4. Use of Eq. 4£.10a
gives
10 <y < It U [—2.5V < v, < +2.5V |
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@) Ay for the non-inverting stage is (1 + Rz/R;1) = 1 4+ 4 = 5. Then, from Eq. 4.10b,

-1 .
-EESUSS%IO or |-—2V5v55+2V|

Inverting and non-inverting stages are the basis for a variety of circuits that perform mathematical
functions. In the next few sections, we demonstrate several such applications.

‘4.5 Difference and Summing Circuits

The circuit shown in Fig. 4.16a is a difference amplifier whose output v, is expressed as avy — bu;.
The terminals labeled v, and vo indicate that one terminal of a signal source is connected to it while
the unseen terminal is at ground. To verify the previous statement, we first thevenize® the portion
of the circuit enclosed by the rectangle in Fig. 4.16a containing vs, F3 and Rg4. The Thévenin voltage
Vg is given by the voltage-divider relation as

R4

Vrg = : (4.
TH T+ R4v2 (4.11)
The Thévenin resistance Rry is
R3R4
Rrg =R = 4,12
TH 3 ” R4 R3 + Rq ( )

The Thévenized circuit is shown in Fig. 4.16b and analysis proceeds using .superposition.

First suppress Vry as displayed in Fig. 417a. This results in an inverting stage since the non-
inverting .terminal is at ground. No current exists in Rry and, hence, the voltage across Rry is:

zero. Then, v, is given by Eq. 4.5 as ‘
vor =~ 0 . (4.13)

Suppressing v, as depicted in Fig. 4.17b results in a non-inverting stage for which use of Eq. 4.9
yields - -
Ri+ Ry

Vo2 = Vra (4.14)
. 1 .
Substitution of Eq. 4.11 into Eq. 4.14 and forming v, = ve1 + voz gives
_ B+ Ry % R4 Ry ” (4.15)

v R R3+R4U2— Ry

Equatioh 4,15 verifies that v, = avy — bvy.
If we set Ry = Ry and Ry = R, Eq. 4.14 reduces to

B2
Vo= 7 (v2 — 1) {4.16)

The ratio Ra/R; allows the difference to be scaled; if Rz = Ry, v, is exactly equal to the difference
of the inputs.

6Thavenize is used as a verb to indicate that the thevenized elements are to be replaced by their Thévenin equivalent.
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Example £.10

Design a difference amplifier that provides v, = 3vp — 4v;. The signal sources v; and v, each have
source resistances of 3k{2.
Solution: From Eq. 4.15,

_ Ry +R; o Ry b = Jit)
B B3+ Ry R]_
Each source resistance is in series with its signal source. Therefore we can choose to identify these
resistances as Ry and Ra. Thus,

|R1=3k0| [Bs=3kn]

Fromb, Ry ="bR; = 4 x 3k} and

Substituting values into @ results in

3k + 12k0- o Ry
3k 3k + Ry

3=

Solving for Ry yields

An inverting summing amplifier is illustrated in Fig. 4.18. Because no current enters the Op-amp
terminals (property 3), KCL at node A requires

ig—f —fg—ig—..—ity=10 or ip=0+i+2+43+ ... iy (4.17}

Since vy = 0 (property 2) the voltage at node 4 is at ground and

V. _ V2. ¥ . UN .
iy = Rl,zz , R2:7'3 R3:7'N Bn (4.18)
The current ig in the feedback resistance R is
. va—vU, 0O-—wy )

_ ih="p—=-p—=—7% (4.19)

Substitution of Egs. 4.18 and 4.19 inte Eq. 4.17 and solving for v, yields

_ 23 o |

vy = R(R1+R2+R>+"'+RN> (4.20)

In Eq. 4.20 we observe that the resistances R, Ry, R3...Ry can be used to scale the sum so that v, -
is of the form .
U = —(a1vi + agvs + azvs + ...anvN) (4.21)

When Ry = Ry = Ry = ... = By = R, v, becomes the sum of the input signals.

Example 4.11
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The circuit in Fig. 4.19 is a 4-bit binary weighted resistance digital-to-analog converter (DAC). Each
resistance is of the form 2" x 4kt where n=0,1,2,3. Switches are closed or open when the corre-

sponding bit is one or zero, respectively. Thus, §; is closed when the most significant bit (MSB)
is one and open for an MSB of zero. Sumlarly, S, is apen or closed when the least significant bit
(LSB) is zero or dne, respectively.

For Vg = 5V and R = R; = 4k, determine v, when

{a
(b
{c
(d

the MSB is one and all other bits are zero,

the LSB id one and all other bits are zero, and
all bits are one.

Evaluate the conditions in {(c) using SPICE.

Solution:

(a) An MSB of one closes S3 and all other switches are open. Use of Eq. 4.19, after substitu-

tion of values, results in
~sagEvorord o

(b) With S, the only closed switch, Eq. 4.19 gives

v 5
32kﬂ] - and Vg = §V = 0.625V

v, = —4kQ [0-}-U+0+

(c) When all switches are closed, Eq. 4.19 yields

4 [41@ ga T Tekn T 32k9] and  [v, = 9.375V

(d) The SPICE generated circuit is displayed in Fig. 4.20 and the netlist is given below.
Circuit for Ex.4-11d

l: =.0P

2: vV V1 0 vl 10Vde

3: R R1 V1l v2 2k

4: R_R2 vl V2 4k

5: R_R3 Vi v2 8k

6: R_R4 Vvl V2 16k

7: E_E1 vi 0 v2 0 1000000000000
B: R_RS vz V3 1k

.END

Note that the oufput voltage v, = V3 and ifs value is shown on Fig. 4£.20. As expected it
is the same as that calculated in part {c).

Also observe that SPICE cannot accommodate ideal Op-Amps. To approximate the ideal we se-
lected A, (E1 in the netlist) to be 10**. This is so large that to four or five significant figures the
results obtained are identical to those for an ideal Op-Amps.

If all of the voltages on the right side of Eq. 4.20 are equal to Vg and R = R, as they are in Ex, 4.11,
Eq. 4.20is expre351ble as

1 1 1 1 1 1 1
—VR(1+§+Z+§)_VR(20+21+ +¥) (4.22)
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By increasing the number of bits, Eq. 4.22 becomes

1
'ug=VR(20+21+22+ +ot ) VRZ"" (4.23)
Since,
Jim nz; = = 2,9, = 2V (4.24)

Truncating the series causes v, to differ from 2V by one LSB as is the case in Ex. 4.11.

Two practical limitations exist on how many bits this type of DAC can convert. The first is that
the largest resistance used is frequently restricted by the fabrication processes. The second limits
the size of the smallest resistance. As seen in Fig. 4.18, iy is the output current of the Op-amp for
which one constraint is power dissipation. Since p = v4, current is also constrained.

Example 4.12

A binary weighted resistance DAC is to be designed for which Vi = 5V, the maximum current is
80mA and all resistances < 35k, What is the maximurm number of bits this DAC can convert?
Solution: With Vg = 5V, v, = 10V [Eq. 4.24]. Therefore .

o Ve 10
Roin = T = SomA= 0.125k8Y

All reéistors in the DAC are of the form 2™ R,,,;.. For this case,

Rmoz 2 2% X Rin
and .
35k) = 2™ x 0.125Kk02
from which - 35KE) o
0.125k$2

Taking the logarithm of both sides and solving for n yields

_ log280

log2 = 8.13

As nmust be an integer we must choose the smaller integer so that n = 8. Note, evenif n turned out
to be 8.83, we would still have to choese n = 8 since . = 9 results in Rmez = 2° x 0.125k0) = 64k,
whereas n = 8 gives Ruue = 32k which satisfies the specification.

The value of n is the largest value we can use. However, since the summation starts with n = 0, the
number of bits converted is nine, ie., .

n=0,1,2,3,4,56,78

The corresponding resistances are:

0.125Kk€2, 0.25Kk1, 0.50k02, 1.00kS2, 2.00kS2, 4.00k, 8.00k2, 16.0kE2, and 32.0k2
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The two constraints imposed by an ideal Op-amp-at the inverting and non-inverting inputs, no
current exists and the voltages are equal-are the basis for analyzmg circuits with severa] Op-amps.
The following example serves as an illustration.

Example 4.13

Determine i, in the circuit of Fig. 4.21 in terms of v, and the circuit elements.
Solution: Both v4 and vwg are equal to v, as the non-inverting terminals of both Op-amps are

connected to the positive terminal of v,. The portion of the circuit constrained within the dashed
rectangle is a non-inverting amplifier whose gain, given by Eq. 4.9, is 1 + R/R = 2. Therefore
Vo1 = 2v,. The currents ¢, and 4o are given by

vnl_UB=2'vS—'US=£.i =U5_I[02 (1)
R R; R, 2" " Ry

i =
Since no current enters the Op-amp, 43 = %;. Thus capacitor current i, is
.4 d :
e = Cd—t('ug — Vo) = C_'-d—t('us — Ugz) (2) -

KCL requires ¢; = % $0
Vs

d
R_]_ = Ca('ﬂs — ’Uog) (3)

f hich
rom whic Cd'vgz B des v
dt ~ T dt R1
or
duoz _ dus Vg

dt  dt R C (4)

Integrating both sides yields

o
Vo2 = Vg — m f’usdt (5)

Substituting for v.3 in (1) gives

L YUs  Us 1 .1
ig = 14 “ R & +R1R20]vsdt and ts——ﬁRleo./vsdt

The circuit in Ex. 4.13 is an inductance simulator as indicated by the current being proportional to
the integral of the voltage. Recall that i, = 1 [ vy dt so the equivalent inductance is Ry RpC. The
significance of this result lies in the realization that inductors are extremely difficult to fabricate on
integrated circuits. Those that are have values limited to about 1uH and are most often used at
frequenmes at or above tens of megahertz. This inductor simulator is capable of reallzmg inductors
in the 1-50mH range and is useful at audio frequencies.
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4.6 Integrators and Differentiators

We described circuits that added and subtracted signais in the previous section. Our focus now

is on circuits that perform integration and differentiation. Figure 4.22 displays a simple integrator

that incorporates an inverting Op-amp stage. In Fig. 422, node P is at ground because vy = 0.
. Then,

vs—0  wg

ip = B ) . (4.25)
Y v dv, .
andzc—Gdt(O—vo)— C & (4.26)
KCL requires —ig + ¢ = 0 ot ig = ic; combining Eqs. 4.25 and 4.26 gives
L o _ s
=&  &TEC #-27)
Integrating both sides of Eq. 4.27 yields
-1 rt
Yg = RO A vsdT (4.28)

where 7 is a dummy variable of integration. Usually, C is uncharged at t = 0 and v,(0) is finite
making v, (0) =.0. Thus, Eq. 4,27 verifies that v, is the integral of v,.

Example 4.14

The waveform in Fig. 4£.23a is applied to the integrator in Fig. 422 with RC = Ips. Sketch v,.
Solution: For the first 0.5us, use of Eq. 4.28 gives the integrator output as

-1

0.5x10~° »
= 1p-8 f 2dt = —2 x 108 [25%107° < 9 x 108 x 0.5 x 1076 = -1V
0 .

Yo

This equation shows that v, is a linear function of time with a negative slope. At ¢ = 0.5us, the
output becomes —1V. For 0.5us < ¢ < 1.0us,

_1 10-¢

== ~2dt =2 x 10520 °) ¢ =2 x 108 x [107 — 0.5 x 10°] = +1V
0.5% 100 -

Vo
Since v, is proportional to the area of the v; curve, the total area for one cycle, is zero as the areas
for each half-cycle are equal in magnitude but have opposite signs. Thus, the resultant waveform
is as displayed in Fig. 4.23b..

Example 4.14 illustrates one method by which triangular waves are generated from square waves.

Interchanging R and C in Fig. 4.22 converts the circuit into a differentiator as shown in Fig. 4.24.
Again, g = 0 so that

dy ~v,
dat R

Since KCL requires i = ix (no current enters the Op-amp) using Eq. 4.29 to solve for v, yields

ie=C and  ip= (4.29)

Up = —RCE:v—S-

- (4.30)
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Example 4.15

For RC = 1ps and v, given by the waveform in Fig, 4.23b, sketch v, for the differentiator in Fig. 4.24,
Solution: For 0 < ¢ < 0.5us, the slope of the waveform is —1/0.5us = —2 x 10° which makes

= —2 x 108¢. During this interval and using Eq. 4.30
(1)vo = 1078 s d (2% 105¢) = ~1078 x (=2 x 10%) = 2V
For times between 0.5us and 1.0us, the slope of the waveform is the negative of that for 0 <t<

0.5us. Consequently, v, is just negative of that given in (1) or v, = —2V. Since v, is periodic, these
results repeat for each cycle of 1us. The resultant sketch of v, is displayed in Fig.4.25.

As expected the result in Ex. 4.15 is the original waveform in Fig. 4.23a and Ex. 4.14.

4.7 Log and Antilog Amplifiers

Log and antilog circuits find use in a number of instrumentation systems where the data must be
transmitted from where measurement occurs to where it is recorded and processed. Their use is
often necessitated because the data spans four or five orders of magnitude. The range of signals
from largest to smallest that a circuit processes is referred to as its dynamic range. Thus, if the
smallest signal is 0.1mV and the largest is 10V, a circuit must have a dynamic range of 10°,i.e., five
orders of magnitude, Since most data is transmitted digitally, we need at least 17 bits to represent
all of the data. What a logarithm does is compress the span of values, e.g., for a range from 1 to 10,
the corresponding range of logarithms is from zero to five. This results in fewer bits transmitted
with reconstruction of the original data (the antilog) occurring at the site where data is processed.

The elementary amplifier in Fig. 4.26 contains a semiconductor diode in the feedback loop. While
diodes have many practical applications, in this circuit it behaves as a non-linear resistance for
which, vp >0,

D= Ise’”’/ Ve (4.31)

When v; > 0, v, < 0 since this is an inverting stage. Since v4 = 0, Vy = 0 and the ciurent entering

the Op-amp is zero, the currents are
Us

in=p (4.32)
and : ,
ip = J,e0=v)/Vr ~ (4.33)
Since v, < 0, Eq. 4.33 may be rewritten as
p = Lelvel/Vr : (4.34)
Equating ip and iz (from KCL at node N) we obtain
Us L g elvol/ve lvol/Ve = Yo
- Le _or £ I {4.35)
Taking the natural log of each side in Eq. 4.35 and then solving for v, results in
[vo| = Vir i — {(4.36)

RI s
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Thus, this circuit behaves as a log amplifier.

Example 4.16

Determine the range for v, in the log amplifier in Fig. 4.26 for 0.1mV < v, < 10V, The parameter
values are R = 1kQ, Vo = 25mV, and I, = 10~ 4. : '
Solution: Substitution of values into Eq. 4.35 yields

va| = 25 x 1073 1n m:slw = 25 x 107 3In 103,

For vs = 0.1mV, |v,} = 0.518V; when v, = 10V, |u,| = 0.806V. Thus the range of v,| values is

0.518 < Ju,| < 0.806V |

Observe how a dynamic range of 10° translates to less than one-half order of magnitude on a.
logarithm scale.

The antilog amplifier is constructed by interchanging the diode and resistance in Fig. 4.26 as shown
in Fig. 4.27. Following the analysis of the log amplifier, ip = ig and up = vy = 0. Thus,

Ie»/V* = |o,|/R (4.37)
and
vp| = I, RIn™? (f—’—) (4.38)
Vo

Equation 4.38 uises the fact that exponentiation is the inverse of taking the logarithm.

Example 4.17

‘For 0.518 < v, < 0.806V/, determine the range of values for {v,| for the antilog amplifier in Fig. 4.27.
The parameter values are: R = 1kQ, I; = 107% 4 and V» = 25mV.
Solution: Substitution of values into Eq. 4.33 yields

_ 1n—16 3y,.-1 v -
]'Uol =10 x 10°1n (m)

For v, = 0.518, evaluation of (1) gives |v,| = 0.0997mV; with v, = 0.806 we obtain |v,| = 10.04V.
Therefore, the range of values is

0.0997mV < |u,| < 10.04V

The values of v, in Ex. 4.17 are the values of |v,| obtained in Ex. 4.16 for the log amplifier. The
output of the antilog amplifier in Ex. 4.17 is the input range in Ex. 4.16 with slight differences due
to roundoff error. This pair of examples demonstrate that the compressed dynamic range of the log
amplifier and the ability to the antilog amplifier to reconstitute the original signals.

Using real rather than ideal Op-amps in the circuits of Figs. 4.26 and 4.27 causes their performance
to-deviate from that given by in Egs. 4.36 and 4.38. In addition, manufacturing and environmental
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variations of component values further deteriorates performance. Consequently, practical log and
antilog amplifiers contain additional circuitry to mitigate the effects of these variations.

"~ Example 4.18

Determine v, for the system described by the block diagram in Fig. 4.28."
Solution: The output of each log amplifier is proportional to the natural log of the input and K is

the constant of proportidnalif:y Therefore, gy = —K Inv; and vge = — K lnvy. {Recall thatv, < 0in
Fig. 4.26.) The mverhng unity gain summer has an output equal to the negative of the sum of the
inputs so

vos = Klnw + Knvg = K[lnv; 4+ 1nw)

Recall the sum of logarithms corresponds to multiplication. Thus,
' voz = K In(vyva)

The antilog amplifier’s constant of proportionality is 1/K which makes -

vo= i lus  and

The circuit analyzed in Ex. 4.18 functions as an analog multiplier. In Sec. 4.8 we introduce analog
multipliers and several of its applications. Note that to achieve multiplication a non-linear element
must be present since multiplication is not a linear operation.

4.8 Analog Multiplier Applications

Analog multipliers are commercially available ICs whose design is based on the behavior of transis-
tors rather than log amplifiers. The circuit symbol is given in Fig. 4.29 and, as expressed in Eq. 4.39,
indicates its output is proportional to the product of the pair of inputs.
v
Vo = ulf% (4.39) .

The rationale for expressing the constant of proportionality as 1/K is because it is desirable that v,
vp and v, have the same range of values. Thus, if —10V < v, € +10V and —10V < v £ +10V,
choosing K = 10V results in — 10V < v, < +10V. Note that K has the dimension volts.

Example 4.19

The input to a multiplier with K = 10V are two square waves. The waveform for v, is shown in
Fig. 4.30a. For each v; given in Figs. 4.30b,c,d, sketch v,.

Solution: The vy given in Fig. 4.30b is identical to that for vy ie., they are in phase. Thus, both
waveforms are either posit-ive or negative during the same intervals of time. Use of Eq. 4.3% results
in the waveform given in Fig. 4.31a. The waveform in Fig. 4.30c is 180° out of phase with v1 50 the
product v;v; is always a negative constant as displayed in Fig. 4.31b.

The waveform in Fig. 4.30d is out of phase with »; by one-quarter of a cycle or 90°. During the
interval 0 < ¢ € T/4 both vy and v, are positive; for T'/4 < t < T/2, vy is negative and vy remains
positive. During the second half-cycle, v1 and v are both negative for T'/2 < ¢ < 3T/4. Att = 3T/4,
Up becomes positive with v) remaining negative. The resultant output is displayed in Fig. 4.31c.
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In Fig. 4.31 we observe that the amount of time per cycle v, is negative is an indicator of the phase
difference between vy and v;. When they are 180° out of phase v, is always negative and for a 90°
phase difference, v, is negative for one-half cycle. Multipliers used in this application are called
phase detectors which are essential features of automatic frequency control (AFC) in communications
and the clock generators in digital systems.

The circuit shown in Fig. 4.32 illustrates how the multiplier is used as a divider circuit,i.e., one that
performs algebraic division. The multiplier output from Eq. 4.39 is v4 = vovy/ K. Both vy and iy
are zero; therefore, KCL dictates ¢; = i3 where ¢; = v;/Ry and i = (0 — vy) /Ra = —voua/KRy.
Equating 41 and 4; and solving for v, yields

KR2 % 'U_l
R

Up = —

(4.40)

Example 4.20

In the circuit of Fig. 4.32, K = 10V, By = 10k, Ry = 5k}, v1 = 2sinwt and v, = 4dcoswt.
Determine v,.
Solution: Substitution of values into Eq. 4.40 yields

v = 10 % 5k « 2sinwt
e 10k 4 coswt

Recognizing that sin =/ cosz = tanz, the oufput is

| Yo = —2.5tanwt

The result in Ex. 4.20 démonstrates that trigonometric functions can also be generated,

Connecting the two multiplier inputs as shown in Fig. 4.33 produces an output proportional to the
input squared. This circuit is used in the square-root circuit of Fig. 4.34. The voltage va = v2/K
and vy = 0 since vy = vp and vp is at ground. XKCL at node N requires i1 = 43 as iy = 0. Then,

i1 =vy/Ry and i3 = (vy —v4)/Re = —v2/KRs. Equating 41 and 45 and solving for v, results in

w=f-ER,, ' (4.41)

Since the quantity inside the radical must be positive, Eq. 4.41 is valid only for v, < 0.

This completes our discussion of how Op-amps in conjunction with analog multipliers are able to
perform a wide variety of mathematical operations.

4.9 SPICE Models of Operational Amplifiers

The equivalent circuit in Fig. 4.3b of a practical Op-amp is readily accommodated in SPICE. How-
ever, an ideal Op-amp cannot be modeled as A, — co.and R; — co are not allowed by SPICE.
Consequently, ideal Op-amps must be represented by non-ideal ones. The values of the parame-
ters in the non-ideal model are selected to give the same results as obtained when ideal Op-amps
are used. To approximate ideal behavior the circuit in Fig. 4.35 may be' used with the following
parameter constraints: :
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1. R; is made very much larger than any other resistance in the circuit. Usually, R; > 10802
suffices. ‘

2. Ay > 10° generally provides the same results as if A, — oo.
3. R, is selected to be much smaller than any other circuit resistance. Typically, R, < 1§} suffices

to give ideal results.

Note that in Ex. 4-11, Fig. 4.20 is similar to the SPICE version of Fig. 4.19 for which 4, = 102,
R; — coand R, —+ 0. Selecting R; — oo was allowed because of the resistances connected to it.
Similarly, R, = 0 is used because the output is taken directly across the Op-amp and no current
exists in the external terminals. ‘

Example 4.21

Determine the output voltage for the difference amplifier shown in Fig. 4.36a using SPICE.

Solution: The SPICE generated circuit is displayed in Fig, 4.36b. The Netlist is as follows

Circuit .for Ex.4-21

1:
2: V_Vl Vvl 0 1vdc
3: R_R1 V1l v2 1k
4; R_R2 V2 V5 10k .
5: R_R4 v3 v2 100M
6: C_C1 0 V6 1n
7: R_R3 v5 Vé 0.001
8: R_R5 0 v3 10k
. 9: E_Bl 0 V5 V2 Wv3 1000000000
10: R_R6 V3 V4 1k
11: v_v2 vd 0 1.01lvde
12: .0pP
13: .PRINT DC node voltage V6
14: .END
S ve) .1000

Observe that the 1 nF capacitance is connected from node 6 to ground. In Sec. 1-9 we demonstrated -
that a capacitance behaves as an open-circuit to a constant voltage.” Thus, no current exists in the
loop containing R3 and C1. This capacitive behavior is described in more detail in Chap. 7.

T = C%‘l and for v = constant, 'iT”tE =0=1i,
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