BJT Amplifiers

Chuck DiMarzio, Northeastern University 15 November 2010 — 11401.tex, Revision 3

1 AC Parameters

Transconductance: $g_m = \frac{I_C^{(DC)}}{V_T}$, tens of mA/V typical.

Pi resistance: $r_{\pi} = \beta \frac{V_T}{I_C^{(DC)}}$. few $k\Omega$ typical.

Emitter Resistance: $r_e = \frac{r_{\pi}}{\beta+1}$, tens of Ω typical.

Early–Voltage resistance: $r_0 = \frac{V_A}{I_C^{(DC)}}$, tens to hundreds of $k\Omega$ typical.

2 Amplifier Characteristics

Voltage gain: $A_V = \frac{v_{out}^{(ac)}}{v_{in}^{(ac)}}$

Input impedance: $R_{in} = \frac{v_{in}^{(ac)}}{i_{in}^{(ac)}}$.

Output impedance: $R_{out} = \frac{v_{out}^{(ac)}}{i_{out}^{(ac)}}$.

Open–circuit Voltage gain: $A_{Vo} = A_V$ with $R_L/R_{out} \to \infty$.

Voltage gain relative to source measured in open–circuit conditions:

$$A_{Vs} = A_V \frac{R_{in}}{R_s + R_{in}}$$

Current gain: $A_i = \frac{i_{out}^{(ac)}}{i_{in}^{(ac)}}$.

Common Emitter Amplifier

$$R_{in} = R_B \parallel r_{\pi}$$

$$R_{out} = R_C \quad (R_C = R_3 \text{ in Figure})$$

$$A_V = -g_m \left(r_0 \parallel R_C \parallel R_L \right)$$

$$A_{Vo} = -g_m \left(r_0 \parallel R_C \right)$$

$$A_{Vs} = A_V \frac{R_B \| r_\pi}{R_B \| r_\pi + R_s}$$

$$A_i = \frac{R_{in}}{R_L} A_V$$

Common Emitter Amplifier with R_E

$$R_{in} = R_B \parallel [r_\pi + (\beta + 1) R_E]$$

$$R_{out} = r_0 \parallel R_C$$

$$A_V = -\alpha \frac{R_C \| R_L}{r_e + R_E}$$
 where $r_e = \frac{r_\pi}{\beta + 1}$

$$A_{Vo} = -\alpha \frac{R_C}{r_e + R_E}$$

$$A_{Vs} = -\frac{\beta(R_C || R_L)}{r_\pi + (\beta + 1)R_E R_s}$$

$$A_i = \frac{R_{in}}{R_L} A_V$$

Common Collector Amplifier

$$R_{in} = R_B \parallel [r_{\pi} + (\beta + 1) (r_0 \parallel R_L)]$$

$$R_{out} = r_0 \parallel \left(r_e + \frac{R_s \parallel R_B}{\beta + 1} \right)$$

$$A_V = \frac{r_0 \| R_L}{r_0 \| R_L + r_e}$$

$$A_{Vo} = \frac{r_0}{r_1 + r} \approx 1$$

$$\begin{split} A_{Vo} &= \frac{r_0}{r_0 + r_e} \approx 1 \\ A_{Vs} &= \frac{R_b}{R_B + R_s} \frac{r_o \| R_L}{\frac{R_s \| R_B}{\beta + 1} + r_e + (r_o \| R_L)} \\ A_i &= \frac{R_{in}}{R_L} A_V \end{split}$$

$$A_i = \frac{R_{in}}{R_L} A_V$$

Applications 3

Common Emitter Amplifier

For Voltage Gain

Common Emitter Amplifier with R_E

Lower Gain, Higher R_{in}

Common Collector Amplifier

for Voltage Buffer

Common Base Amplifier

(Not shown)

for Current Buffer

$$R_{in} = R_B \parallel r_{\pi}$$

Want large

1.5k typical

$$R_{out} = R_C$$

Want small

10k typical

$$A_V = -g_m \left(r_0 \parallel R_C \parallel R_L \right)$$

Want large

100s typical

$$A_{Vo} = -g_m \left(r_0 \parallel R_C \right)$$

Want large

10's to 100's typical

$$A_{Vs} = A_V \frac{R_B \| r_\pi}{R_B \| r_\pi + R_s}$$

$$A_i = \frac{R_{in}}{R_L} A_V$$

$$R_{in} = R_B \parallel [r_{\pi} + (\beta + 1) R_E]$$
 Want very large

100's k typical

$$R_{out} = r_0 \parallel R_C \parallel r_0$$

Want small

10k typical

$$A_V = -\alpha \frac{R_C \| R_L}{r_e + R_E}$$
 where $r_e = \frac{r_\pi}{\beta + 1}$

Few to 10s Typical

$$A_{Vo} = -\alpha \frac{R_C}{r_e + R_E}$$

$$A_{Vs} = -\frac{\beta(R_C || R_L)}{r_\pi + (\beta + 1)R_E R_s}$$

$$A_i = \frac{R_{in}}{R_L} A_V$$

$$R_{in} = R_B \parallel [r_{\pi} + (\beta + 1) (r_0 \parallel R_L)]$$
 Want large $(\beta + 1) R_L$ typical

$$R_{out} = r_0 \parallel \left(r_e + \frac{R_s \parallel R_B}{\beta + 1}\right)$$
 Want small $R_s/(\beta + 1)$ typical

$$A_V = \frac{r_0 \| R_L}{r_0 \| R_L + r_e}$$

Want Unit Gain

$$A_{Vo} = \frac{r_0}{r_0 + r_e}$$

$$A_{Vs} = \frac{R_b}{R_B + R_s} \frac{r_o \| R_L}{\frac{R_s \| R_B}{\beta + 1} + r_e + (r_o \| R_L)}$$

$$A_i = \frac{R_{in}}{R_L} A_V$$

$$R_{in} = \frac{1}{g_m} \frac{\beta}{\beta + 1}$$

Want small

 25Ω typical

$$R_{out} = R_C$$

Want large

 $k\Omega$ typical

$$A_V = \frac{\beta}{\beta + 1} \frac{R_C \| R_L}{R_s + \frac{1}{g_m}}$$

$$A_{Vo} = -g_m \left(r_0 \parallel R_C \right)$$

$$A_{Vs} = \frac{R_b}{R_B + R_s} \frac{r_o \| R_L}{\frac{R_s \| R_B}{\beta + 1} + r_e + (r_o \| R_L)}$$

$$A_i = \frac{\beta}{\beta + 1} \frac{R_C}{R_C + R_L}$$

Want Unit Gain