Goals

This lab will introduce you to MOSFETs (metal-oxide-semiconductor field effect transistors). You will build a MOSFET inverter and determine the voltage transfer characteristic of this device ($V_{out}$ vs. $V_{in}$). From this transfer characteristic you will learn how to extract information about the MOSFET such as threshold voltage ($V_T$) and the device constant $K$.

In the cutoff and triode regions the MOSFET approximates the operation of a switch. In between these two regions lies the saturation region. In saturation the MOSFET makes a good amplifier.

Next, the CMOS inverter will be examined. This circuit also uses an n-channel MOSFET as the active driver, but replaces the drain resistor ($R_D$) with a p-channel MOSFET. This configuration dramatically reduces power consumption.

As always, take your time during these experiments. Think about what you are being asked to do and why the experiments are important.

Once you are comfortable with these basic MOSFET configurations, you will design and test either a CMOS logic gate or an AM radio transmitter using the CD4007 integrated circuit.

Prelab

Prelabs will be collected for grading at the beginning of the lab. Keep a copy for your own use during the lab!

1. In Fig. 3 find $R_{G1}$ and $R_{G2}$ such that $V_{GS} = 2$ volts. Compute $I_D$ and $V_{DS}$ if $V_T = 1$ volt and $k_n'(W/L) = 0.5$ mA/V$^2$ (see eqns. 4.5a,b in the 5th edition of Sedra and Smith). (If you only have the 2nd edition of Hambley, refer to Section 5.3 and use the values of 1 volt for $V_{to}$ and $K = 0.25$ mA/V$^2$ in equation 5.18.) Remember that this is a DC analysis, so set $v_{in} = 0$. (Note: there are many correct solutions for $R_{G1}$ and $R_{G2}$ !)

2. Read the lab experiment and see the instructor with any questions you may have.

3. Read Part 2, choose one of the two design projects, and sketch a circuit you think will work. (You may change your design as you work through the lab, however.)
Part 1: MOSFET characteristics

The MOSFETs that you will be using for this lab are in a 14-pin package as shown in Fig. 1. Study this diagram and become familiar with the layout of the individual MOSFETs within the CD4007 chip. Notice there are three n-channel devices and three p-channel devices. Although some devices share pins, all terminals for each device are available at an external pin on the chip.

MOSFETs are actually 4-terminal devices: gate, drain, source, and substrate. In the CD4007 the substrates for all n-channel devices are connected to pin 7. Likewise, the substrates for all p-channel devices are connected to pin 14. For proper function of the MOSFETs you must attach pin 7 to the lowest potential in your circuit (usually ground) and you must attach pin 14 to the highest potential in your circuit (V_{DD}).

MOSFETs are susceptible to electrostatic discharge (ESD). You have no doubt experienced large ESDs if you have ever scuffed your feet across a carpet and touched a metallic object. Even very small ESDs can damage a MOSFET by blowing-out the gate oxide. This is mainly because the gate oxide is very thin (<100 nm). These MOSFETs have been protected from minor forms of ESD by two clamping diodes attached to each gate. One diode prevents V_{GS} from exceeding V_{DD} (pin 14) + 0.7 V. The other prevents V_{GS} from becoming more negative than V_{SS} (pin 7) - 0.7 V. See fig. 1 on the spec sheet.

![Figure 1. The CD4007 Integrated Circuit.](image-url)
Concept: The DC transfer characteristic of a MOSFET inverter

Build the simple MOSFET inverter shown in figure 2. You may use any of the three n-channel MOSFETs on the CD4007, but don’t forget to connect pins 7 and 14 as described above!

![MOSFET Inverter Diagram]

**Figure 2. A MOSFET Inverter**

\[ R_D = 10 \text{ k}\Omega, \ V_{DD} = 10 \text{ V}, \ 0 \leq V_{in} \leq 10 \text{ V}. \]

a) Measure the voltage transfer characteristic for the MOSFET inverter by varying \( V_{in} \). Use the table below to guide you in selecting the appropriate data points.

**Important:** Please time yourself, and record the time taken to complete step a). (This information will be used for comparison with MATLAB later in this experiment.)

<table>
<thead>
<tr>
<th>( V_{in} )</th>
<th>( V_{out} )</th>
<th>( I_D ) (Calculated) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

10

* From \( V_{out} \), \( V_{DD} \), and \( R_D \).
Notice that the circuit is an inverter: when the input voltage is “high,” the output voltage is “low” and vice versa. What is the total power dissipation of this inverter when $V_{in} = 0$? What is the power dissipation when $V_{in} = 10$ v?

b) i) When the gate reaches the threshold voltage, the MOSFET begins to conduct current through the drain ($I_D$). Based on the measurements in part (a), what is the approximate Threshold voltage ($V_T$) for this MOSFET? 
   ii) At home, plot the square-root of Drain current against Input voltage ($V_{GS}$). The active region now becomes a straight line. Extrapolate this straight line to the Input voltage axis. The intercept gives us the accurate Threshold voltage $V_T$.

c) Remember that in the saturation region, $I_D = \frac{1}{2} k_n'(W/L)(V_{GS} - V_T)^2$. Find $\frac{1}{2} k_n'(W/L)$ for this MOSFET using the data from part (a), where the equation for $I_D$ is based on the notation in the Sedra and Smith textbook.

d) Carefully and accurately plot the voltage transfer characteristic (i.e., $V_{out}$ vs.$V_{in}$) in your notebook and lab report. Identify the three regions of MOSFET operation on your plot:

- **Cut-off:** $V_{GS} < V_T$
- **Saturation:** $V_{GS} > V_T$ and $V_{DS} > V_{GS} - V_T$
- **Triode:** $V_{GS} > V_T$ and $V_{DS} < V_{GS} - V_T$

**Concept: The MOSFET used as a switch**

If we wanted to use the MOSFET as a switch, we would design a circuit so that the MOSFET was either in the cut-off region (the switch is opened between D and S) or the triode region (switch closed ~ short circuit). As an example, it is possible to redesign your night-light circuit from Lab 3 using a MOSFET rather than a BJT.

e) Calculate the “on” resistance of this MOSFET when $V_{in} = 10$ v, where $R_{on} = V_{DS}/I_D$. Next find $R_{off}$ when $V_{in} < V_T$. Comment on the quality of this device as a switch. (Ideally, $R_{on} = 0 \Omega$ and $R_{off} \rightarrow \infty$).

**Concept: The MOSFET amplifier**

The voltage gain of a circuit is defined as $A_V = \Delta V_{out} / \Delta V_{in}$. By looking at the plot you made in part (d), it is easy to see that $A_V$ is nearly zero in the cut-off and triode regions since the slope in these regions is approximately zero.

f) Find the bias point ($V_{GS}$, $V_{DS}$) where $|A_V|$ is maximum using the voltage transfer characteristic that you found in part (a).

g) Graphically determine the small signal voltage gain at this bias point. (Watch the ± sign!)
**Analog Option:** ask you instructor if you should perform parts (h) and (i) below! If not, please skip to the *CMOS Logic* section.

To use the circuit in Fig. 2 as an amplifier, we need to add a circuit to the *gate* which sets the bias point ($V_{GS}$). One way to do this is shown in Figure 3 below:

![Figure 3. A common-source (CS) MOSFET amplifier](image)

Recall that the gate current in a MOSFET is zero and that $C_{in}$ acts like an open circuit under DC conditions.

h) Find values for $R_{G1}$ and $R_{G2}$ that result in the optimum operating point determined in part (f). Notice that there is no unique solution to this design problem. Using larger resistors will increase the input impedance of the amplifier (which is usually good), but will also increase the amplifier’s susceptibility to noise. **Record** the values for the two resistors. Also **measure** and record the operating point of the circuit (when $v_{in} = 0$). **Explain why your MOSFET is biased in the saturation region.** **NOTE:** Finding the exact resistors to implement your design may be tricky. When designing, pick one of the two values from those resistors in your parts kit. Use series and parallel combinations for the other -- see the instructor or lab tech if you need a resistor that is not in the kit.

i) Use the signal generator to apply a small signal to the amplifier’s input. **Compare this gain with the gain that you determined graphically in part (g).** (Remember, a “small signal” should *not* produce distortion at the output of the amplifier.)

Notice that the voltage gain of this amplifier is much lower than the gain of a comparable BJT amplifier. This is because $g_m$ is typically lower for a MOSFET than a BJT.
**Concept: CMOS Logic**

The logic inverter in Figure 2 has one major flaw. The power dissipation is too high when the output is low. This would not be a practical logic gate in a modern integrated circuit because a large number of these gates would use a huge amount of power. The CMOS logic family significantly reduces power dissipation by replacing the drain resistance ($R_D$) with a p-channel MOSFET as shown in Figure 4.

![Figure 4: The CMOS inverter](image)

j) Build the CMOS inverter shown in Figure 4. Here, use output 1 from the Power Supply for $V_{dd} = 10V$, and output 2 for $V_{in}$.

k) Plot the Voltage Transfer Characteristic for the CMOS inverter using MATLAB:
To open MATLAB on your PC, go to **Start > MATLAB > RMATLAB 2012A**. Set the Current Directory to “C:\Temp\Work”. All command source codes are available in this folder.

1. As the Multimeters on your bench do not have a GPIB connection, they cannot be controlled by the MATLAB Instrument Control Toolbox. Instead, we shall use the oscilloscope to measure the DC voltage. Connect the input $V_{in}$ (output2 from power supply) and output $V_{out}$ of the CMOS inverter to channel 1 and channel 2 of the oscilloscope, respectively.
2. Run command `[scope, powersupply] = setup_inv` in the MATLAB command window to initialize the settings of oscilloscope and power supply.
3. Run command `[output, timelapse] = stepup(powersupply, scope)` to increase the input voltage of the CMOS inverter in (preset) steps of 0.1V. The input and output voltage are measured simultaneously by the oscilloscope.
**You can find the source code of setup_inv and stepup in Appendix 1 & 2.**

4. The returned value output is a two-column array (the name output is arbitrary, and you may use any name you choose): The first column consists of the list of input voltages, and the second column consists of the corresponding output voltages. You may conveniently name the two column vectors \( V_{in} \) and \( V_{out} \). They are obtained using the array commands:

\[
\text{vin} = \text{output}(:,1); \\
\text{vout} = \text{output}(:,2);
\]

5. Plot the Voltage Transfer Characteristic (VTC) for the CMOS inverter by using the command \( \text{plot(vin,vout)} \). Provide axis names and title, as well as team #, the names of your team members, and print a copy for each team member for inclusion in their lab report.

6. On the plot, find out the threshold voltages of the NMOS and PMOS transistor, respectively.

   1) Find on the plot the bias point (\( V_{in} \)) where the voltage gain of the CMOS inverter is maximum. Then, use the input and output voltage arrays to determine the small signal voltage gain (\( A_v = \Delta V_{out} / \Delta V_{in} \)) at this bias point.

**Efficiency of MATLAB:**
You may type `timelapse` in the MATLAB command window to see how long the program `stepup` took.

Estimate how long it would have taken had you manually obtained the Voltage Transfer Characteristic by increasing \( V_{in} \) in steps of 0.1V. Comment on MATLAB’s efficiency.

* You may rely on the timing results of step a) in Part 1.

m) Using an Ammeter, determine the total power dissipation of this inverter when \( V_{in} = 0 \) and when \( V_{in} = 10V \). Assume that the two inverters (Figure 2 and Figure 4) are in the high state 50% of the time and in the low state 50% of the time for many logic applications. **Compare the average power dissipation of the two inverters, and describe the benefit of CMOS logic.**
Part 2: MOSFET Design

Choose one design project below: Remember to hand-in your signed lab notebook before leaving the lab!

1. CMOS Logic

As you discovered in lab last week, the advantage of CMOS logic is that no drain current flows through the MOSFETs when the output is either high or low. Because the CMOS logic family is based on the inverter, the logic functions of NOT, NAND, and NOR are easy to create. The logic functions AND and OR, however, require us to build a NAND or NOR gate and then add an inverter to the gate output: AND = NAND+NOT

Design a 3-input CMOS OR-gate using MOSFETs on the CD4007 chip. Make certain that the power dissipation is zero when the output is both logic 1 and logic 0. As an added challenge, design the OR gate using the minimum number of CD4007 chips. Remember, pins 7 and 14 are committed to ground and VDD, and this limits the placement of these two MOSFETs in your circuit. Add push-button switches to the inputs of the OR gate so that pushing the button applies a logic “1” to the gate and releasing the button applies a logic “0”.

2. CMOS Ring Oscillator and AM radio transmitter

For this design, you may barrow (through your Instructor / TA) an AM radio from the Instrument Room. This radio will be used to test your AM transmitter.

A ring oscillator is made by connecting an odd number of inverters in a closed ring as shown below. To see how this oscillates, assume that inverter A has an input of zero and the output of inverter A is VDD. Then the input to B is VDD, and the output of B is zero. This, in turn means the input to C is zero and the output of C is VDD. This switches the input to inverter A from zero to VDD. The circuit “chases its tail” causing the inverters to continuously switch from high to low. The oscillation frequency, $f_{osc}$, depends on the propagation delay time, which is the small time it takes to charge the (gate) capacitance and switch the state of any individual inverter, and is given by $f_{osc} = 1/(2Nt_p)$. Here $N$= # of inverters and $t_p$=average propagation delay of an inverter driving another identical inverter.

![Ring Oscillator Diagram]
The oscillation frequency can be controlled by changing the RC time constant between any two inverters. This will increase the time it takes to switch the input state. Modifying the RC time constant can be accomplished by inserting a resistor between any output and the next input (increasing R) or by inserting capacitance between any input and ground (increasing C).

The AM radio band is between 540 kHz and 1610 kHz. Design a ring oscillator to generate an output frequency in the AM band. Choose a frequency where there are no radio stations. It is strongly advised to connect a piece of wire to act as an antenna. The antenna has a large capacitance and therefore will change the oscillator frequency by increasing the propagation delay. To avoid this, add another CD4007 inverter between the output of the oscillator and the antenna! This fourth inverter acts like a buffer. A basic block diagram is shown below:

![Block Diagram of CMOS Ring Oscillator](image)

The ring oscillator generates the carrier frequency that your AM radio is tuned to. There is no information contained in this frequency, however. To add information, we modulate the carrier frequency in amplitude. Here we will just turn the carrier on and off. To accomplish modulation, use the function generator (you could also use a 555 timer). The function generator should be set up to produce a 1 kHz square wave between 0 and 5 volts. Use the DC OFFSET and AMPLITUDE controls to adjust the function generator output while viewing it on the oscilloscope. Once you have the necessary waveform, apply it to V\text{DD} and ground of your buffer. Now the oscillator’s output is turning on and off at 1 kHz. Tune the AM radio until you hear the 1 kHz signal being transmitted.

Finally, place a push-button switch in the circuit so that you can interrupt the transmission. Pushing the switch on and off will allow you to send Morse Code to an AM radio.

*When your design is complete, get the instructor’s approval of your fully documented schematic.*

*Hand-in your lab notebook for grading prior to leaving the lab!*
**Equipment List -- Lab #5**

Note: "*" indicates this component was used in Lab 1 & 2.

Agilent E3647A dual output power supply *
Fluke 8010A digital multimeter *
Fluke 45 Dual Display Multimeter *
Proto-Board model PB-103 *
Agilent MSO6012A mixed-signal oscilloscope *
Agilent 33220A function generator *
Dell OPTIPLEX 755 Desktop PC*
#20 hook up wire *
wire strippers *
Banana plug-terminated test leads *
BNC-to-BNC cable *
BNC-to-Banana plug cable (2) *
BNC Tee *
Momentary contact push-button switches (3)
AM Radio ------- shared by class

Transistors:

\[
\text{CD4007 complementary MOSFETs (3)}
\]

Resistors: 1/4 W unless otherwise specified

\[
\begin{align*}
2.2 \text{ k}\Omega & \quad \pm5\% \quad (1) * \\
10 \text{ k}\Omega & \quad \pm5\% \quad (2) * \\
47 \text{ k}\Omega & \quad \pm5\% \quad (2) * \\
100 \text{ k}\Omega & \quad \pm5\% \quad (2) * \\
309 \text{ k}\Omega & \quad \pm5\% \quad (2) * \\
1 \text{ M}\Omega & \quad \pm5\% \quad (3)
\end{align*}
\]

Capacitors:

\[
1.5 \mu\text{F} \quad \text{non-polarized} \quad (5)
\]

Please refer to Figure 1 for the terminal diagram of the CD4007UBE integrated circuit used in this lab.

**CD4007UBE Types**

**Features:**
- Standardized symmetrical output characteristics
- Medium-Speed Operation – 1μA, 10ns (typ) at 10 V
- 100% tested for quiescent current at 20 V
- Meets all requirements of JEDEC Terminology Standard No. 13B, "Standard Specifications for Description of "B" Series CMOS Devices"
- Maximum input current of 1 μA at 18 V
- over full package temperature range: 100 nA at 18 V and 25°C

**RECOMMENDED OPERATING CONDITIONS**

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>LIMITS</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply-Voltage Range</td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>(For $V_{A}$ – Full Package</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>Temperature Range)</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

**STATIC ELECTRICAL CHARACTERISTICS**

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>CONDITIONS</th>
<th>LIMITS AT INDICATED TEMPERATURES (°C)</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+25</td>
<td></td>
</tr>
<tr>
<td>Quiescent Device Current, $I_{Q, Min}$</td>
<td>$-0.8$</td>
<td>$-0.5$</td>
<td>$0.25$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-0.5$</td>
<td>$-0.10$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.5$</td>
<td>$0.10$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1.5$</td>
<td>$0.15$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$2.5$</td>
<td>$0.5$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$9.5$</td>
<td>$0.19$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$12.5$</td>
<td>$0.15$</td>
</tr>
<tr>
<td>Output Voltage Low-Level, $V_{OL, Max}$</td>
<td>$-0.5$</td>
<td>$-0.5$</td>
<td>$V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-0.10$</td>
<td>$10$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-0.15$</td>
<td>$15$</td>
</tr>
<tr>
<td>Output Voltage High-Level, $V_{OH, Min}$</td>
<td>$0.5$</td>
<td>$0.5$</td>
<td>$4.96$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.10$</td>
<td>$10$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0.15$</td>
<td>$15$</td>
</tr>
<tr>
<td>Input Low Voltage, $V_{IL, Max}$</td>
<td>$4.5$</td>
<td>$5$</td>
<td>$1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$9$</td>
<td>$10$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$13.5$</td>
<td>$15$</td>
</tr>
<tr>
<td>Input High Voltage, $V_{IH, Min}$</td>
<td>$0.5$</td>
<td>$5$</td>
<td>$V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1$</td>
<td>$10$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1.5$</td>
<td>$15$</td>
</tr>
</tbody>
</table>

Copyright © 2003, Texas Instruments Incorporated

Laboratory #5 11  EECE2413
**CD4007UB Types**

**MAXIMUM RATINGS, ABSOLUTE-MAXIMUM VALUES:**

- DC SUPPLY-VOLTAGE RANGE, \( V_{DD} \)
  - Voltages referenced to \( V_GS \) terminals: \(-0.5 \text{V} \text{ to } +20 \text{V}\)
- INPUT-VOLTAGE RANGE, ALL INPUTS
  - \(-0.5 \text{V} \text{ to } V_{DD} +0.5 \text{V}\)
- DC INPUT CURRENT, ANY CIN INPUT
  - \( \pm 10 \text{mA} \)
- POWER DISSIPATION PER PACKAGE (\( P_{D} \))
  - For \( T_A = -55 \text{C} \text{ to } +125 \text{C} \)
    - 500 mW
  - For \( T_A = +125 \text{C} \text{ to } +150 \text{C} \)
    - Derate linearity at 13 mW/\( \text{C} \) to 500 mW
- DEVICE DISSIPATION PER OUTPUT TRANSISTOR
  - For \( T_A = -55 \text{C} \text{ to } +125 \text{C} \)
  - \( \pm 100 \text{W} \)

**OPERATING-TEMPERATURE RANGE (\( T_{A} \))**
- \(-55 \text{C} \text{ to } +125 \text{C} \)
- \(-55 \text{C} \text{ to } +150 \text{C} \)

**LEAD TEMPERATURE (DURING SOLDERING):**
- At distance \( 1/16 \) to \( 1/32 \) inch (1.6 to 0.79 mm) from case for 10s max.
  - \( +205 \text{C} \)

**DYNAMIC ELECTRICAL CHARACTERISTICS at \( T_A = 25 \text{C} \):**

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>CONDITIONS</th>
<th>LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagation Delay Time</td>
<td>( V_{DD} ) Volts, Typ., Max.</td>
<td>ns</td>
</tr>
<tr>
<td>( T_{PLH} )</td>
<td>5, 55, 110</td>
<td></td>
</tr>
<tr>
<td>( T_{PLH} )</td>
<td>10, 30, 80</td>
<td></td>
</tr>
<tr>
<td>( T_{PLH} )</td>
<td>15, 26, 50</td>
<td></td>
</tr>
<tr>
<td>Transition Time</td>
<td>( T_{THL}, T_{TLH} )</td>
<td>ns</td>
</tr>
<tr>
<td>( T_{THL} )</td>
<td>5, 100, 200</td>
<td></td>
</tr>
<tr>
<td>( T_{TLH} )</td>
<td>10, 50, 100</td>
<td></td>
</tr>
<tr>
<td>( T_{TLH} )</td>
<td>15, 40, 40</td>
<td></td>
</tr>
<tr>
<td>Input Capacitance ( C_{IN} )</td>
<td>Any Input, Typ.</td>
<td>pf</td>
</tr>
<tr>
<td></td>
<td>10, 15</td>
<td></td>
</tr>
</tbody>
</table>

**Fig. 1** - Detailed schematic diagram of CD4007UB showing input, output, and parasitic diode.

**Fig. 2** - Simple CMOS logic circuit arrangements using type CD4007UB.
CD4007UB Types

e) High Sink-Current Driver

![Diagram of High Sink-Current Driver]

(6,3,10); (8,5,12);
(11,14); (7,4,9)

f) High Source-Current Driver

![Diagram of High Source-Current Driver]

(6,3,10); (13,1,12);
(14,2,11); (7,9)

g) High Sink- and Source-Current Driver

![Diagram of High Sink- and Source-Current Driver]

(6,3,10); (14,2,11);
(7,4,9); (13,8,1,6,12)

h) Dual Bi-Directional Transmission Gating

![Diagram of Dual Bi-Directional Transmission Gating]

(1,6,12); (2,9);
(11,4); (8,13,10);
(6,3)

Fig. 2 – Sample CMOS logic circuit arrangements using type CD4007UB (Classic)

Fig. 3 – Typical voltage-transfer characteristics for NAND gate.

Fig. 4 – Typical voltage-transfer characteristics for NOR gate.

Fig. 5 – Typical output low (sink) current characteristics.

Fig. 6 – Minimum and maximum voltage transfer characteristics for inverter.

Fig. 7 – Typical current and voltage transfer characteristics for inverter.

Fig. 8 – Minimum output low (sink) current characteristics.

3-16
function [scope, powersupply]=setup_inv
% initializes the scope function and initializes starting settings
% connect the output 1 from the power supply for Vdd, and output 2
% for Vin

scope = visa('agilent','GPIB0::7::INSTR'); % open GPIB connection to
scope
set(scope,'InputBufferSize', 1.024E6); % hold 1 meg of data in memory
fopen(scope)
if(scope.Status~='open')
   fprintf('Error opening GPIB connection to oscilloscope\n');
   output = [0,0]; % error flags set
   return;
end
fprintf(scope,:TIMEBASE:MODE MAIN'); % required for deep memory
transfer
fprintf(scope,:TIMEBASE:RANGE 5E-4'); % set scope time window to 5
ms width
fprintf(scope,:TIMEBASE:REFERENCE LEFT');% put start of window at
left
fprintf(scope,:TIMEBASE:DELAY 0'); % move output pulse to left
side %change for delay
fprintf(scope,:CHANNEL1:RANGE 2.0'); % set vertical sensitivity of
channel 1; heidy cambiar amplitud
%fprintf(scope,:CHANNEL1:RANGE 0.8'); % set vertical sensitivity of
channel 1
fprintf(scope,:CHANNEL1:COUPLING DC'); % coupling to DC
customness:TRIG:SOURCE EXT'); % trigger on sync from function
generator
fprintf(scope,:TRIG:SLOPE POSITIVE'); % sync output goes low when
pulse starts
fprintf(scope,:TRIG:LEVEL 1'); % trigger on 1V point

% To initializes the power supply
% written by E. Carr Everbach for CenSSIS, last updated 15 December
2000
powersupply = visa('agilent','GPIB0::9::INSTR'); % open GPIB
connection to function generator
fopen(powersupply)
if(powersupply.Status~='open')
   fprintf('Error opening GPIB connection to power supply\n');
   output = 0; % error flag set
   return;
end

%MODIFIED FOR E3631A AGILENT, POWER SUPPLY
fprintf(powersupply,'*RST');% initialize triple power supply to a
known state
%fprintf(powersupply,'VOLT 25.0'); % set power supply 25V output to
1A
fprintf(powersupply,'INST:SEL OUT1'); % set power supply 25V output
to 1A,MODIFY BY HEIDY
fprintf(powersupply,'OUTPUT:STATE ON'); % enable power
fprintf(powersupply, 'VOLT:LEVEL 10'); %MODIFY BY HEIDY
fprintf(powersupply, 'CURRENT:LEVEL 1'); %MODIFY BY HEIDY

fprintf(powersupply, 'INST:SEL OUT2'); % set power supply 25V output to 1A,MODIFY BY HEIDY
fprintf(powersupply, 'OUTPUT:STATE ON'); % enable power
fprintf(powersupply, 'VOLT:LEVEL 10'); %MODIFY BY HEIDY
fprintf(powersupply, 'CURRENT:LEVEL 1'); %MODIFY BY HEIDY
fprintf(powersupply, 'SYSTEM:BEEP:IMMEDIATE'); % beep to announce success
fclose(powersupply) % close the GPIB line

fprintf(scope, ':AUT');
fclose(scope) % disconnect GPIB scope object
APPENDIX - 2

Filename: stepup.m

function [output,timelapse] = stepup(powersupply, scope)
% increasing the input voltage by a step of 0.1V
% Connect input Vin of the CMOS inverter to channel 1, and connect output Vout to channel 2

fopen(powersupply)
if (powersupply.Status~='open')
fprintf('Error opening GPIB connection to powersupply\n');
output = [0]; % error flags set
return;
end

fopen(scope)
if (scope.Status~='open')
fprintf('Error opening GPIB connection to oscilloscope\n');
output = [0]; % error flags set
return;
end

tic

fprintf(powersupply,'INST:SEL OUT2');
fprintf(powersupply,'OUTPUT:STATE ON');
fprintf(powersupply,'VOLT:LEVEL 0');
fprintf(scope,':AUT');
fprintf(scope,':MEASURE:VAVERAGE CHANNEL1');
input(1) = fscanf(scope,'%f');
fprintf(scope,':AUT');
fprintf(scope,':MEASURE:VAVERAGE CHANNEL2');
output1(1) = fscanf(scope,'%f');

for x=1:1:100
fprintf(powersupply,'VOLT:STEP 0.1'); % change the input by a step of 0.1V
fprintf(powersupply,'VOLT UP'); % voltage increase
fprintf(scope,':AUT');
fprintf(scope,':MEASURE:VAVERAGE CHANNEL1'); % measure the input DC voltage level on the scope
input(x) = fscanf(scope,'%f');
fprintf(scope,':AUT');
fprintf(scope,':MEASURE:VAVERAGE CHANNEL2'); % measure the output DC voltage level on the scope
output1(x) = fscanf(scope,'%f');
end

output(:,1)= input;
output(:,2)= output1;

timelapse = toc;
timelapse

fclose(powersupply)
fclose(scope)