"Nothing but NANDs."

\[\overline{AA} = \overline{A} \quad \text{not (A and A)} \]

Inverter

\[\overline{AB} = A + B \]

\[\text{not(\text{not}(A \text{ and } \text{not}(B)))} = (A \text{ or } B) \]

\[\text{not (\text{not} (A \text{ and } B)}) = (A \text{ and } B) \]

\text{Nors}

\[\overline{A} \quad A + B \quad A \text{ or } B \]

\[A \quad B \quad A \times B \]
Electrical Issues

Diode Logic

RTL Resistor-Transistor logic

TTL Transistor-Transistor

High is true

Noise Tolerance

[Diagram of electrical circuit with labels and waveforms]

Some input

Error

Out of SPEC but OK
Gate C is fF
Total Load often PF

\[Q = C_L V_{DD} \]

Energy
\[Q V_{DD} \]

Power
\[f Q V_{DD} = f C_L V_{DD}^2 \]

Frequency
\[\frac{N^2}{3} \times 10^{12} \times 25 \text{ V}^2 \]

10^{-2} to 10^{-1} W/unit

Timing rise time
input \[\text{V}_{OH} \]
output \[\text{V}_{OL} \]

Propagation Times

\[T_{PHL}, T_{PLH} \]
Inverter AND

$A \times \overline{A} = C$

Don't look at the output too quickly.

\[R_D = 904k \Omega \]

\[\frac{5V}{R_{ON}} + \frac{5V}{R_{ON} + R_D} \]
\[i_D = k \left[2(V_{GS} - V_{TO}) V_{DS} - V_{DS}^2 \right] \]

\[i_D \approx k_2 (V_{GS} - V_{TO}) V_{DS} \]

\[R_{on} = \frac{V_{DS}}{i_D} = \frac{V_{DS}}{2k(V_{GS} - V_{TO}) V_{DS}} \]

\[k = \frac{k_0}{2} \frac{W}{L} \]