EECE2412— INTRODUCTION TO ELECTRONICS— Fall 2016

Syllabus

INSTRUCTOR:	Charles A. DiMarzio, Associate Professor
	Electrical and Computer Engineering
	Lab: 334 Egan
	Mail: 440 Dana
	Office: 302 Stearns
	Northeastern University
	Boston, Massachusetts 02115
	Phone: 617–373–2034
	Electronic Mail: dimarzio@ece.neu.edu
	Course Website:
	http://www.ece.neu.edu/courses/eece2412/2016fa/
	Faculty Website:
	http://www.ece.neu.edu/faculty/dimarzio/
	Research Lab Website:
	http://www.ece.neu.edu/groups/osl

OFFICE HOURS:	Mon 10:00–12:00
	Feel free to email questions as well.

TEXT:	Hambley, Allan R. <i>Electronics</i> , Second Edition, Prentice-
	Hall.

OTHER	For PSPICE, you can download a student version from
RESOURCES:	http://www.electronics-lab.com/downloads/schematic/013/
	There will be some use of Matlab or other software for calculations. I recommend Matlab, but I don't insist on it.I will put pointers to other resources on the class website.

LOCATION:	035SL

¹²¹⁷⁹syl:1 — 2 September 2016

TIME:	Mon, Wed, Thu, 4:35 — 5:40 PM

LAB:	As scheduled, in 9HA
	EECE2413, Electronics Lab. This lab must be taken
	simultaneously since the material in the lab supplements
	the lecture. Note that students from the two lectures
	sections are intermixed in the labs.

READING:	Reading is to be done before the start of the week. When
	I lecture, I will assume that you have read the related
	material.

COURSE	In this course you will learn about four types of electronic
DESCRIPTION:	devices: op–amps, diodes, bipolar junction transistors
	(BJTs), and metal-oxide-semiconductor field effect tran-
	sistors (MOSFETs). You will learn how to design and
	analyze useful electronic circuits (such as amplifiers and
	logic circuits) using these components.

GRADING:	20 % on homework (Equal weight on best $n-1$ of n assignments where $n \approx 10$) 50 % on 2 mid-term exams 30 % on final exam.
	Please discuss questions regarding homework grading first with the TA and then with the instructor. Discuss questions regarding exam grading with the instructor.

HOMEWORK:	Homework is typically given on Thursday and due at the beginning of class the following Wednesday.
	Be sure to show all steps. Simply writing the answer is not acceptable.
	Keep a photo of your homework for your own use while grading is being done.
	Working together is acceptable, and even encouraged, on homework, BUT the work that you submit must be your own (no copies of the group's solution!) If you are work- ing with a group, make certain you understand every part of your solution.
	If you work in a group, indicate the names of members of the group (on each problem if applicable).
	Late homework will incur a penalty of 10 points out of 100 until solutions are posted. After that, late homework will not be graded and will be scored as a zero in the gradebook.

ETHICAL BEHAVIOR:	The following paragraph is specifically modified to allow for collaboration on homework. No collaboration, except as specifically authorized, is al- lowed under penalty of failure. Plagiarism and cheating will not be tolerated; they will be dealt in accordance with University policies described in the Student Hand- book. All engineering majors should be familiar with the Honor Code of our College of Engineering that is in- cluded in the freshman course material, and with profes- sional engineering codes of ethics. Although students are encouraged to collaborate on homework assignments to develop a deeper understanding of the topics presented in this course, each student is expected to prepare and sub- mit his/her own narrative reports, drawings, and other materials. If two students' work is suspiciously similar
	a penalty may be assessed to both students. If a situa- tion arises in which you are uncertain if cooperation with another student would constitute cheating or some other violation of the honor code, please ask the instructor for guidance and clarification of these rules. Violators will be referred to the Student Court for review, where penalties may include but are not restricted to: zero credit on the work, student placed on probation, submission of infor- mation on judgment in the students' permanent record.
1	1
SPECIAL NEEDS:	The University will make reasonable accommodations for persons with documented disabilities. Students should notify the Disability Resource Center located in 20 Dodge Hall and their instructors of any special needs. Instruc- tors should be notified the first day of classes

Tentative Schedule

1	7,8 Sep	Administrivia. Schedule. Expectations. Syllabus.
		Introduction. Course overview.
		Review of Circuits Properties and uses of controlled
		sources. Amplifier models.
		Reading: Sections 1.4 to 1.8.

2	12,14,15 Sep	Op–Amps: Basic Applications. Reading: Sections 1.9 to 1.11, 2.1 to 2.5.
		Reading: Sections 1.9 to 1.11, 2.1 to 2.5.

3 19, 21, 22 Sep	Amplifier Circuits: Applications. Deviations from Idealin Op-Amps.Reading: Sections 2.6 to 2.11.Lab: 1 (Op Amps) Parts 1-2: 20 or 23 Sep.
-------------------------	---

4 26, 28,29 Se	Diodes: Characteristics, modeling, and applications. Reading: Sections 3.1 to 3.6 and 3.12. Lab: 1 (Op. Amps) Part 3: 27 or 30 Sep.
-----------------------	---

5	3,5,6 Oct	Diode Circuits. Physical operation of the junction diode. Reading: Sections 3.7 to 3.11. Lab: 2 Part 1 (Diode Circuits): 4 or 7 Oct.

Monday 10 Oct — Columbus Holiday: No class

6	12 Oct	Review Day Lab: 2 Part 2 (Diode Circuits): 11 or 14 Oct.
---	--------	---

13 Oct	Exam 1. Two sheets of notes, both sides.
--------	--

7 17,19,20 Oct	Introduction to the biopolar junction transistor (BJT): Physics of operation and circuit models Reading: Sections 4.1 through 4.4. Lab: 3 Part 1 (BJT): 18 or 21 Oct.
-----------------------	--

8 24,26,27 Oct	 BJT Circuit Analysis: Large signal and small signal analysis of BJT circuits. Reading: Sections 4.5 to 4.7. Lab: 3 Part 2 (BJT): 25 or 28 Oct.
----------------	--

9 31 Oct 2,3 Nov	BJT Applications: Amplifiers and Logic circuits.Reading: Sections 4.8 and 4.9.Lab: 4 Part 1 (BJT Amplifier): 1 or 4 Mar.
-------------------------	--

10 7,9,10 No	Introduction to the field–effect transistor (FET): Physi- cal operation, large–signal analysis. Reading: Sections 5.1 to 5.3.
---------------------	--

Friday 11 Nov — Veterans' Holiday: No Lab Tue or Fri

Lab: 4 Part 2 (BJT Amplifier): 15 or 18 Nov.	11	14 Nov	FET Small Signal Analysis.Reading: Sections 5.4 to 5.6.Lab: 4 Part 2 (BJT Amplifier): 15 or 18 Nov.	T
--	----	--------	---	---

16 Nov	Review Day
--------	------------

17 Nov	Exam 2. Two sheets of notes, both sides.
--------	--

12 2	21 Nov	FET Circuits: Digital Logic Reading: Section 6.1–6.5.
-------------	--------	---

Wed - Fri23--25 Nov — Thanks
giving Holiday: No class, No Lab Tue or Fri.

13	28,30 Nov 1 Dec	Digital Logic: Basic logic circuits in MOS and CMOS. Reading: Sections 6.6 to 6.9. Lab: 5 Part 1 (MOS): 29 Nov or 2 Dec.
----	--------------------	--

14 5,7 December CMOS Logic and Review Day Lab: 5 Part 2 (MOS): 6 or 9 Dec.	
--	--

Reading Day: No Class, 8 December

TBD	Final Exam (2 hours, Common Exam for Both Sections). Closed–book with three sheets of notes (both sides) al- lowed.
-----	---

Notation

This is the notation used by the text to represent voltages and currents. While I like the choice, I've found it adds some extra confusion for the student. This table may help.

Quantity	V or I	Subscript	Voltage Example
Total Instantaneous Signal	lower case	CAPITAL	v_A
DC Signal	CAPITAL	CAPITAL	V_A
AC Signal	lower case	lower case	v_a
Phasor of AC	CAPITAL	lower case	V_a

Thus, any signal is represented by

$$v_A = V_A + v_a$$
 Text

and a sinusoidal signal is represented by

$$v_A = V_A + V_a \sin(\omega t + \phi)$$
 Text

Remember that the RMS of an AC signal is $V_a/\sqrt{2}$.

Decibels

Decibels are a convenient concept to describe gains and losses in electronic systems. The gain of an amplifier is described in terms of the power ratio of output to input, and is expressed in dB. (note lower–case "d," meaning "deci–," and capital "B" for "Bel.") as

$$g = 10 \log \left(p_{OUT} / p_{IN} \right).$$

If the output and input impedances are the same, then the power gain is the square of the voltage (or current) gain, and

$$g = 10 \log \left(\frac{v_{OUT}}{v_{IN}}\right)^2 = 20 \log \left(v_{OUT}/v_{IN}\right).$$

Although it is not needed for this course, signals are often expressed in dBm. This is not a measure of gain, but of signal level. It is the ratio of the power to one milliwatt.

$$y = 10 \log (p/10^{-3} \text{W}).$$

Typically, this concept is used with 50–Ohm impedances common in RF work, and

$$y = 10 \log (v^2 / 10^{-3} \text{W} / 50 \text{Ohms}).$$