Problem 3.15

- (a) The diode is on. V=0 and $I=(10 \text{ volts})/(2.7 \text{ k}\Omega)=3.70 \text{ mA}$.
- (b) The diode is off. I = 0 and V = 10 volts.
- (c) The diode is on. V = 0 and I = 0.
- (d) The diode is on. I = 5 mA and V = 5 volts.

Problem 3.16

- (a) D_1 is on and D_2 is off. V = 10 volts and I = 0.
- (b) D_1 is on and D_2 is off. V = 6 volts and I = 6 mA.
- (c) Both diodes are on. V = 30 volts and I = 33.6 mA.

Problem 3.24

Peak current flows at the instant for which $\boldsymbol{v}_{\text{S}}(\text{t})$ attains its maximum value. The maximum current is

$$I_{\text{max}} = \frac{V_{\text{m}} - V_{\text{B}}}{R} = \frac{20 - 14}{10} = 0.6 \text{ A}$$

As a function of time, the current is

$$i(t) = \frac{V_{m}sin(\omega t) - V_{B}}{R}$$

provided that this expression yields a positive result. Otherwise i(t) = 0. To determine the interval for which the diode is in the on state we must solve this equation:

$$i(t) = 0 = \frac{V_{m} \sin(\omega t) - V_{B}}{R} = \frac{20 \sin(\omega t) - 14}{10}$$

Solving we find two roots: $t_1=0.775/\omega$ and $t_2=2.37/\omega$ radian. t_1 and t_2 are indicated on the waveforms shown on the preceding page. The period of the sine wave is $T=2\pi/\omega$. Thus the percentage of the time that the diode is on is

diode on =
$$\frac{2.37/\omega - 0.775/\omega}{2\pi/\omega} \times 100\% = 25.3\%$$

Notice that C_1 and D_1 form a clamp circuit. Furthermore, D_2 and C_2 form a peak rectifier so the load voltage is approximately equal to $2V_{\rm m}$ which is why this circuit is called a voltage doublem.