Electrical Engineering Week 9

Charles A. DiMarzio
EECE-2210

Northeastern University

Oct 2021

Week 9 Agenda: First-Order Circuits

- RC Circuits
- Boundary Conditions
- Steady State Solutions
- Charge and Discharge a Capacitor
- RL Circuits
- Some Examples

Time-Varying Sources

- Transient Analysis (Now)
- Differential Equations
- First Order for RL, RC
- Second Order for RLC
- Circuits Usually Involve Switches
- Transient and Steady-State Solutions
- Sinusoidal Solution (Later)
- Phasor Analysis ($\frac{d}{d t}=j 2 \pi f$)
- Complex Impedance
- "Easy" Solutions
- Fourier Series and Transforms

RC Circuit

RC Equations

- Differential Equation

$$
v_{A}=-R C \frac{d v_{A}}{d t}
$$

- Test Solution

$$
v_{A}=k_{1} e^{s t}+k_{2}
$$

- Substitute

$$
k_{1} e^{s t}+k_{2}=-R C \frac{d}{d t}\left(k_{1} e^{s t}+k_{2}\right)
$$

- Take the Derivative

$$
k_{1} e^{s t}+k_{2}=-R C s k_{1} e^{s t}
$$

- Group

$$
k_{1}(1+R C s) e^{s t}-k_{2}=0
$$

RC Solution

- From Previous Page

$$
k_{1}(1+R C s) e^{s t}-k_{2}=0
$$

- True for All Time

$$
k_{2}=0 \quad s=-\frac{1}{R C}
$$

- Solution

$$
v_{A}=k_{1} e^{-t /(R C)}+0
$$

- Time Constant

$$
\begin{gathered}
v_{A}=k_{1} e^{-t / \tau} \\
\tau=R C
\end{gathered}
$$

- Still One Unknown $\left(k_{1}\right)$

General Boundary Conditions

Initial Conditions

$$
\begin{gathered}
i=-C \frac{d v_{A}}{d t} \\
i=\frac{v}{R}
\end{gathered}
$$

$$
v_{A}=k_{1} e^{s t}+k_{2}
$$

- From Earlier Page

$$
\begin{gathered}
v_{A}=k_{1} e^{-t / \tau} \\
\tau=R C
\end{gathered}
$$

- Original Voltage $V\left(0^{-}\right)$
- Boundary Condition

$$
V\left(\mathrm{o}^{+}\right)=V\left(\mathrm{O}^{-}\right)
$$

- At $t=0$

$$
k_{1} e^{-0 / \tau}=k_{1}=V\left(0^{+}\right)
$$

- Solution

$$
v_{A}=V\left(\mathrm{O}^{-}\right) e^{-t / \tau}
$$

Exponential Solutions

$$
v_{a}=v_{a}(0) e^{-t / \tau} \quad v_{a}(\tau)=v_{a}(0) \times \frac{1}{e} \approx v_{a}(0) \times 0.3679
$$

$$
v_{a}(2 \tau) \approx v_{a}(0) \times 0.1353 \quad v_{a}(10 \tau) \approx v_{a}(0) \times 4.540 \times 10^{-5}
$$

Steady-State Solution

$$
\begin{gathered}
i=-C \frac{d v_{A}}{d t} \\
i=\frac{v}{R} \\
v_{A}=k_{1} e^{s t}+k_{2}
\end{gathered}
$$

- Steady State

$$
t \rightarrow \infty
$$

- Anything that is going to happen has happened

$$
\frac{d \text { Anything }}{d t}=0
$$

- Transient Solution is Zero

$$
\frac{d v_{A}}{d t}=0 \quad i=0
$$

- Solution

$$
k_{2}=0=v_{A \infty}
$$

Q: Why would the steady-state solution not be zero?

Charge and Discharge

Close S_{1} at $t=0$. Open S_{1} at $t=t_{1}$. What will happen?

Charge!

Thévenin Equivalent Charging

$$
\begin{gathered}
v_{T}=v_{S} \frac{R_{2}}{R_{1}+R_{2}} \\
R_{T}=R_{1} \| R_{2}
\end{gathered}
$$

Assume

$$
v_{A}(0)=0
$$

Charging Equations

$$
\begin{gathered}
v_{T}=v_{S} \frac{R_{2}}{R_{1}+R_{2}} \\
R_{T}=R_{1} \| R_{2} \\
v_{A}(0)=0
\end{gathered}
$$

$$
\begin{aligned}
& i=\frac{v_{T}-v_{A}}{R_{T}}=C \frac{d v_{A}}{d t} \\
& v_{T}-v_{A}=R_{T} C \frac{d v_{A}}{d t} \\
& v_{A}+R_{T} C \frac{d v_{A}}{d t}=v_{T}
\end{aligned}
$$

Proposed Solution

$$
\begin{gathered}
v_{A}=k_{1} e^{s t}+k_{2} \\
k_{1} e^{s t}+k_{2}+R_{T} C \frac{d}{d t}\left(k_{1} e^{s t}+k_{2}\right)=v_{T} \\
k_{1} e^{s t}\left(1+R_{T} C s\right)+k_{2}=v_{T} \\
s=\frac{-1}{R_{T} C} \quad k_{2}=v_{T}
\end{gathered}
$$

Charging Solution

$$
\begin{gathered}
v_{T}=v_{S} \frac{R_{2}}{R_{1}+R_{2}} \\
R_{T}=R_{1} \| R_{2} \\
v_{A}(0)=0
\end{gathered}
$$

- From Previous Page

$$
\begin{gathered}
v_{A}=k_{1} e^{s t}+k_{2} \\
s=\frac{1}{R_{T} C} \quad k_{2}=v_{T} \\
v_{A}=k_{1} e^{-t /\left(R_{T} C\right)}+v_{T}
\end{gathered}
$$

- Initial Condition

$$
\begin{gathered}
v_{A}(0)=k_{1}+v_{T} \\
v_{A}(0)=0 \quad k_{1}=-v_{T}
\end{gathered}
$$

- Solution

$$
v_{A}=v_{T}\left(1-e^{-t /\left(R_{T} C\right)}\right)
$$

Charging Result

- From Previous Page

$$
\begin{gathered}
v_{T}=v_{S} \frac{R_{2}}{R_{1}+R_{2}} \\
R_{T}=R_{1} \| R_{2} \\
v_{A}(0)=0
\end{gathered}
$$

$$
v_{A}=v_{T}\left(1-e^{-t /\left(R_{T} C\right)}\right)
$$

- Use v_{T} and R_{T}

$$
\begin{gathered}
v_{A}=v_{s} \frac{R_{2}}{R_{1}+R_{2}} \times \\
\left\{1-e^{-t /\left(\left(R_{1} \| R_{2}\right) C\right]}\right\}
\end{gathered}
$$

- Assume $R_{1} \ll R_{2}$

$$
v_{A} \approx v_{s} \times\left\{1-e^{-t /\left(R_{1} C\right]}\right\}
$$

- Example

$$
\begin{gathered}
R_{1}=100 \Omega \quad C=100 \mu \mathrm{~F} \\
\tau \approx R_{1} C=10 \mathrm{~ms}
\end{gathered}
$$

Charging Voltage

$v_{A \infty}=v_{T} \approx v_{s} \quad \tau_{C} \approx R_{1} C \quad v_{A}\left(\tau_{C}\right) \approx(1-0.3679) v_{s}=0.6321 v_{s}$

Discharge!

- Thévenin Equivalent

$$
v_{T}=0 \quad R_{T}=R_{2}
$$

- Initial Voltage
- Open S_{1} at $t=t_{1}$

$$
\begin{aligned}
& v_{A}\left(t_{1}\right)=v_{s} \frac{R_{2}}{R_{1}+R_{2}} \times \\
& \left\{1-e^{-t_{1} /\left(\left(R_{1} \| R_{2}\right) C\right]}\right\}
\end{aligned}
$$

- We've seen this before

$$
v_{A}=v_{A}\left(t_{1}\right) e^{-\left(t-t_{1}\right) /\left(R_{2} C\right)}
$$

- Example: $R_{2}=10 \mathrm{k} \Omega$

$$
v_{A}=v_{A}\left(t_{1}\right) e^{-\left(t-t_{1}\right) / \tau_{D}}
$$

Summary

- Charge

$$
v_{A}=v_{s} \frac{R_{2}}{R_{1}+R_{2}}\left\{1-e^{-t / \tau_{C}}\right\}
$$

- Charging Time Constant

$$
\tau_{C}=\left(R_{1} \| R_{2}\right) C
$$

- End of Actual Charge

$$
v_{C}=v_{s} \frac{R_{2}}{R_{1}+R_{2}}\left\{1-e^{-t_{1} / \tau_{C}}\right\}
$$

- Discharge

$$
v_{A}=v_{C}\left(t_{1}\right) e^{-\left(t-t_{1}\right) / \tau_{D}}
$$

- Discharge Time Constant

$$
\tau_{D}=R_{2} C
$$

Charging and Discharging Voltage

Repeated Charging and Discharging Voltage

Neon Light Blinker

Neon Light is open for low voltage, low resistance for high voltage. $R=1 \mathrm{M} \Omega, C=1 \mu \mathrm{~F}, \tau=1 \mathrm{~s}, v_{S} \approx 100 \mathrm{~V}$ or more.

RL Circuit

Simplified RL Circuit

$$
\begin{gathered}
v_{T}=v_{S} \frac{R_{1}}{R_{1}+R_{S}} \\
R_{T}=R_{1} \| R_{s}
\end{gathered}
$$

RL Equations

$$
\begin{gathered}
V_{A}=L \frac{d i}{d t} \\
v_{A}=L \frac{d}{d t} \frac{v_{T}-v_{A}}{R_{T}} \\
v_{A}=k_{1} e^{s t}+k_{2}
\end{gathered}
$$

Try

Solve

$$
\begin{gathered}
k_{1} e^{s t}+k_{2}=-\frac{L}{R_{T}} \frac{d v_{A}}{d t}=-\frac{L}{R_{T}} k_{1} s e^{s t} \\
\left(1+\frac{L}{R_{T}} s\right) k_{1} e^{s t}+k_{2}=0 \\
s=-\frac{L}{R_{T}} \quad k_{2}=0
\end{gathered}
$$

RL Solution

- From Previous Page

$$
\begin{gathered}
v_{A}=k_{1} e^{s t}+k_{2} \\
s=-\frac{L}{R_{T}} \quad k_{2}=0
\end{gathered}
$$

- Result

$$
v_{A}=k_{1} e^{-\frac{L}{R_{T}} t}
$$

- Boundary Condition:

$$
\begin{array}{r}
i(0)=0, v_{A}(0)=v_{T} \\
v_{A}=v_{T} e^{\frac{L}{R_{T}} t}
\end{array}
$$

- Time Constant

$$
v_{A}=v_{T} e^{-t / \tau} \quad \tau=\frac{R_{T}}{L}
$$

AC Coupled Amplifier

