Electrical Engineering Week 8

Charles A. DiMarzio EECE–2210 Northeastern University

Oct 2021

Week 8 Agenda: Inductors

- Physical Concepts
- Symbols
- *i*-*v* Behavior
- Fabrication
- Power and Energy
- Parallel and Series Combinations
- Steady–State Solutions
- "Instantaneous" Current Change

The Inductor

- Coil of Wire
- Air or Ferromagnetic Core
- Current → Magnetic Field (Electromagnet)
- Changing Field → Voltage (Faraday's Law)
- Voltage Opposes Change in Current

$$v\left(t\right) = L\frac{di\left(t\right)}{dt}$$

timetoast.com

www.electrical4u.net 12425..slides8r2-2

Oct 2021

Voltage Source

 $i = \int v dt$

Current Source

 $v = L \frac{di}{dt}$

i-v Behavior

Chuck DiMarzio, Northeastern University 12425..slides8r2–6

Step Current

Current is Continuous

Oct 2021

Chuck DiMarzio, Northeastern University

Values

$$v = L \frac{di}{dt}$$

Typical Values:

$$Volts = L \frac{mA}{ms}$$
$$L \text{ in } \frac{Vs}{A} = Henries = H$$
ommon in RF.

mH, μ H Common in RF. kH Do Exist.

Fabrication

- Coil of Wire (Many Turns)
- Field of a solenoid

$$B(t) = \frac{\mu N}{\ell} i(t)$$

• Inductance of a solenoid

$$v(t) = \frac{\mu A N^2}{\ell} \frac{di(t)}{dt} \qquad L = \frac{\mu A N^2}{\ell}$$

- Air, Iron, Ferrite Core (Increased Field)
- Solenoid, Toroid, Helmholz Coils etc.
- Many Options

 $\mu = \mu_r \times 1.26 \times 10^{-6} \mathrm{H/m}$

Oct 2021

Inductors

indiamart.com

components101.com

toroids.com

falconacoustics.co.uk

More Inductors & Transformers

kintronic.com

polytechnichub.com

coloradocountrylife.coop

globalspec.com electricianinperth.com.au Chuck DiMarzio, Northeastern University

12425..slides8r2-11

Oct 2021

Helmholz Coils

3bscientific.com magnetic-instrument.com

Oct 2021

Chuck DiMarzio, Northeastern University

Real Inductors

 R_s , C_p Small. R_p Large

Oct 2021

Power and Energy

$$v(t) = L\frac{di(t)}{dt}$$
$$p(t) = i(t)v(t) = i(t)L\frac{di(t)}{dt}$$

$$w = \int p(t) dt = \frac{i^2 L}{2}$$

Example: Still Another Cup of Coffee

$$w = 42 \text{kJ} \qquad i^2 L = 84 \text{kJ}$$

$$L = 6H$$
 $i = 118A$

Note: $v \approx 0$, so $p \approx 0$, except during turn-on and turn-off. These times can be exciting!

Oct 2021

Chuck DiMarzio, Northeastern University 12425..slides8r2–14

MRI Magnet Quench

fickr.com Superconducting magnet in use, Low T, R_s , v, High i. In quench, $-di/dt \uparrow$, $T \uparrow$, $R_s \uparrow$, High v, i, p.

Oct 2021

Chuck DiMarzio, Northeastern University

Inductors in Series

Just Like Resistors

Oct 2021

Parallel Inductors

Just Like Resistors Again

Oct 2021

Chuck DiMarzio, Northeastern University 12425..slides8r2–17

Parallel/Series Summary

	Series	Parallel
Voltage Sources	$v = \sum v_n$	Contradictory
Current Sources	Contradictory	$i = \sum i_n$
Resistors	$R = \sum R_n$	$\frac{1}{R} = \sum \frac{1}{R_n}$
Inductors	$L = \sum L_n$	$\frac{1}{L} = \sum \frac{1}{L_n}$
Capacitors	$\frac{1}{C} = \sum \frac{1}{C_n}$	$C = \sum C_n$

Parallel/Series Example (1)

$L_{AB} = L_1 + \{L_4 \parallel [L_2 + L_3 + (L_8 \parallel L_9) + L_7] + [L_5 \parallel L_6]\}$

Parallel/Series Example (2)

$$L_{1:9} = 1 \text{mH}$$

$$L_{23897} = 1 + 1 + \frac{1}{2} + 1 = 3.5 \text{mH}$$

$$L_{423897} = 1 \parallel 3.5 = 778 \mu \text{H}$$

$$L_{AB} = 1 + 0.778 + \frac{1}{2} = 2.28 \text{mH}$$

Mutual Inductance

- Two or More Coils
- Same Core

$$v_{1}(t) = L_{1} \frac{di_{1}(t)}{dt} + M \frac{di_{2}(t)}{dt}$$
$$v_{2}(t) = L_{2} \frac{di_{2}(t)}{dt} + M \frac{di_{1}(t)}{dt}$$

- M Same Units as L
- Transformers
 - AC Only
 - Higher Frequency
 - \rightarrow Smaller

Oct 2021

Inductors at DC (Steady State)

 C_p Open, L Short, R_p Large (ignore). All that's left is R_s (just the resistance of the wire). $v = iR_s \rightarrow 0$

Oct 2021

Chuck DiMarzio, Northeastern University

Steady State

Steady State (Short L, Open C): $v_o = -v_{in}R_2/R_1$ and $R_{out} = 0$

What Happens?

 S_1 , S_2 Closed. Open S_1 . Open S_2

Oct 2021

Jacob's Ladder

https://www.youtube.com/watch?v=PXiOQCRiSp0