Electrical Engineering Week 8

Charles A. DiMarzio
EECE-2210

Northeastern University

Oct 2021

Week 8 Agenda: Inductors

- Physical Concepts
- Symbols
- $i-v$ Behavior
- Fabrication
- Power and Energy
- Parallel and Series Combinations
- Steady-State Solutions
- "Instantaneous" Current Change

The Inductor

- Coil of Wire
- Air or Ferromagnetic Core
- Current \rightarrow Magnetic Field (Electromagnet)
- Changing Field \rightarrow Voltage (Faraday's Law)
- Voltage Opposes Change in Current

$$
v(t)=L \frac{d i(t)}{d t}
$$

timetoast.com
www.electrical4u.net

Symbol

Voltage Source

Current Source

$i-v$ Behavior

Step Current

Current is Continuous

Values

$$
v=L \frac{d i}{d t}
$$

Typical Values:

$$
\begin{gathered}
\text { Volts }=L \frac{\mathrm{~mA}}{\mathrm{~ms}} \\
L \text { in } \frac{\mathrm{Vs}}{\mathrm{~A}}=\text { Henries }=\mathrm{H}
\end{gathered}
$$

$\mathrm{mH}, \mu \mathrm{H}$ Common in RF.
kH Do Exist.

Fabrication

- Coil of Wire (Many Turns)
- Field of a solenoid

$$
B(t)=\frac{\mu N}{\ell} i(t)
$$

- Inductance of a solenoid

$$
v(t)=\frac{\mu A N^{2}}{\ell} \frac{d i(t)}{d t} \quad L=\frac{\mu A N^{2}}{\ell}
$$

- Air, Iron, Ferrite Core (Increased Field)
- Solenoid, Toroid, Helmholz Coils etc.
- Many Options
$\mu=\mu_{r} \times 1.26 \times 10^{-6} \mathrm{H} / \mathrm{m}$

Inductors

indiamart.com

components101.com

toroids.com

falconacoustics.co.uk

More Inductors \& Transformers

kintronic.com

polytechnichub.com

globalspec.com

coloradocountrylife.coop
electricianinperth.com.au

Helmholz Coils

3bscientific.com
magnetic-instrument.com

Real Inductors

R_{s}, C_{p} Small. R_{p} Large

Power and Energy

$$
\begin{gathered}
v(t)=L \frac{d i(t)}{d t} \\
p(t)=i(t) v(t)=i(t) L \frac{d i(t)}{d t} \\
w=\int p(t) d t=\frac{i^{2} L}{2}
\end{gathered}
$$

Example: Still Another Cup of Coffee

$$
\begin{array}{cl}
w=42 \mathrm{~kJ} & i^{2} L=84 \mathrm{~kJ} \\
L=6 \mathrm{H} & i=118 \mathrm{~A}
\end{array}
$$

Note: $v \approx 0$, so $p \approx 0$, except during turn-on and turn-off. These times can be exciting!

MRI Magnet Quench

fickr.com Superconducting magnet in use, Low T, R_{S}, v, High i. In quench, $-d i / d t \uparrow, T \uparrow, R_{s} \uparrow$, High v, i, p.

Inductors in Series

Just Like Resistors

Parallel Inductors

$$
\frac{1}{L_{n}} \frac{d i_{n}}{d t}=v \quad \frac{d i}{d t}=\sum \frac{d i_{n}}{d t} \quad \frac{L}{=} \sum \frac{1}{L_{n}}
$$

Just Like Resistors Again Oct 2021

Parallel/Series Summary

	Series	Parallel
Voltage Sources	$v=\sum v_{n}$	Contradictory
Current Sources	Contradictory	$i=\sum i_{n}$
Resistors	$R=\sum R_{n}$	$\frac{1}{R}=\sum \frac{1}{R_{n}}$
Inductors	$L=\sum L_{n}$	$\frac{1}{L}=\sum \frac{1}{L_{n}}$
Capacitors	$\frac{1}{C}=\sum \frac{1}{C_{n}}$	$C=\sum C_{n}$

Parallel/Series Example (1)

Parallel/Series Example (2)

$$
\begin{gathered}
L_{1: 9}=1 \mathrm{mH} \\
L_{23897}=1+1+\frac{1}{2}+1=3.5 \mathrm{mH} \\
L_{423897}=1 \| 3.5=778 \mu \mathrm{H} \\
L_{A B}=1+0.778+\frac{1}{2}=2.28 \mathrm{mH}
\end{gathered}
$$

Mutual Inductance

- Two or More Coils
- Same Core

$$
\begin{aligned}
& v_{1}(t)=L_{1} \frac{d i_{1}(t)}{d t}+M \frac{d i_{2}(t)}{d t} \\
& v_{2}(t)=L_{2} \frac{d i_{2}(t)}{d t}+M \frac{d i_{1}(t)}{d t}
\end{aligned}
$$

- M Same Units as L
- Transformers
- AC Only
- Higher Frequency \rightarrow Smaller

Inductors at DC (Steady State)

C_{p} Open, L Short, R_{p} Large (ignore). All that's left is R_{s} (just the resistance of the wire). $v=i R_{s} \rightarrow 0$

Steady State

Steady State (Short L, Open C): $v_{o}=-v_{\text {in }} R_{2} / R_{1}$ and $R_{\text {out }}=0$

What Happens?

S_{1}, S_{2} Closed. Open S_{1}. Open S_{2}

Jacob's Ladder

https://www.youtube.com/watch?v=PXiOQCRiSp0

