Electrical Engineering Week 7

Charles A. DiMarzio EECE–2210 Northeastern University

Oct 2021

Week 7 Agenda: Capacitors

- Physical Concepts
- Symbols
- *i*-*v* Behavior
- Fabrication
- Power and Energy
- Parallel and Series Combinations
- Steady–State Solutions
- Charge and Discharge

Oct 2021

Big Picture

Devices

Resistors	Capacitors	Inductors
v = iR	$v = \frac{1}{C} \int i dt$	$i = \frac{1}{L} \int v dt$
R in Ohms	C in Farads	L in Henries
	Voltage Continuous	Current Continuous
	Open to DC	Short to DC

Circuits

RC or RL	LC	RLC
First Order DE	Second Order DE	2nd with Loss
Negative Exponentials	Sinusoids	Lossy Sinusoids

We can do interesting things with time-varying sources.

$$q = \int i dt$$
 $q = Cv$ $i = \frac{d}{dt}(Cv)$ $i = C\frac{dv}{dt}$

Oct 2021

Chuck DiMarzio, Northeastern University

Fluid Analogy

- Pump with intake and outlet closed
- Water flows and pressure difference increases
- Flow decreases as pressure builds
- Limit depends on strength of pump
- Provide a path and it will return to equilibrium
- Return will take time

Oct 2021

The Math

$$i = C\frac{dv}{dt}$$

• Expect Exponentials (Negative)

$$\frac{d\left(e^{-at}\right)}{dt} = -ae^{at}$$

• Expect "easy" solutions for sinusoidal sources

$$\frac{d\sin\omega t}{dt} = \omega\sin\omega t$$

• Expect to use Euler's Formula a lot.

Oct 2021

Chuck DiMarzio, Northeastern University 12425..slides7–5

Values

Typical:

$$\frac{mA}{V/ms} = \frac{10^{-3}Coulombs/s}{V/(10^{-3}s)} = 10^{-6}\frac{Coulombs}{V} = \mu Farads$$

Full range covers many orders of magnitude

Capacitors (1)

Chuck DiMarzio, Northeastern University

Capacitors (2)

Electrolytics

Big Capacitors

Principal Specifications: Capacitance (Farads), Maximum Voltage

Oct 2021

Chuck DiMarzio, Northeastern University

Voltage Source

What Will Happen?

finite $i \rightarrow$ Voltage Continuous in Time

What Will Happen?

Current Source

Fabrication

Chuck DiMarzio, Northeastern University 12425..slides7–15

Equations

$$C = \frac{\epsilon A}{d}$$
$$\epsilon = \epsilon_r \epsilon_0$$
$$\epsilon_0 = 8.85 \times 10^{-12} \text{F/m}$$

Useful Term: Relative dielectric constant, $\epsilon_r = 1$ for vacuum. Pretty close for air.

Example

 $\frac{\text{High Voltage}}{\text{Small } d} \rightarrow \text{Breakdown}$

Air: $\approx 30 kV/cm$

Glass: $\approx 100 \text{kV/cm}$

$$C = \frac{\epsilon A}{d} = 10 \mu f$$

$$\epsilon = 3.9 \epsilon_0 \qquad \text{SiO}_2$$

$$\frac{A}{d} = 3 \times 10^5 \text{m}$$

$$d = 10 \mu \text{m} \qquad A = 3 \text{m}$$

Interleave, Roll, or otherwise work to get more AUse high ϵ_r Use high Breakdown Voltage

Power and Energy

Power

$$p(t) = v(t)i(t) \qquad p(t) = v(t)C\frac{dv(t)}{dt}$$

Energy

$$w = \int p(t) dt = \frac{v^2 C}{2}$$

Example

$$w = \frac{(100V)^2 \, 100\mu F}{2} = 500 \text{mJ}$$

Another Cup of Coffee

$$w = 42$$
kJ $w = \frac{v^2 C}{2}$ $v^2 C = 2w = 84,000$

Examples

$$C = 1000 \mu F$$
 $v = 9.2 kV$

$$C = 100$$
 mF $v = 920$ V

 $\times(3 \text{ or } 3000)$ with 40X to 400X voltage rating

$$330\mu F$$
 $V_{limit} = 25V$

Oct 2021

Chuck DiMarzio, Northeastern University

Parallel Combinations

 $C_{n} dt$

Oct 2021

Series Combinations

Chuck DiMarzio, Northeastern University 12425..slides7–21

Parallel/Series Summary

	Series	Parallel
Voltage Sources	$v = \sum v_n$	Contradictory
Current Sources	Contradictory	$i = \sum i_n$
Resistors	$R = \sum R_n$	$\frac{1}{R} = \sum \frac{1}{R_n}$
Capacitors	$\frac{1}{C} = \sum \frac{1}{C_n}$	$C = \sum C_n$

Example Problem

 $C_{1:6} = 1\mu F$ $C_{AB} = ?$

Steady State

- DC Sources, Resistors, Capacitors (and later Inductors)
- $t \to \infty$

•
$$\frac{danything}{dt} \rightarrow 0$$

• Specifically
$$\frac{dv_{capacitor}}{dt} \rightarrow 0$$

- Therefore $i_{capacitor} = 0$
- Treat Capacitors as Open and Solve

Oct 2021

Steady–State Example

Turn on V_s at t = 0. $v_A = ?$ $v_B = ?$ $v_C = ?$ $i_L = ?$

Oct 2021

Chuck DiMarzio, Northeastern University 12425..slides7–25

Real Capacitors

 R_s , L Low. R_p High.

Oct 2021

Chuck DiMarzio, Northeastern University

High Voltage Power Supply

Don't Try this at Home, Kids!

High–Voltage Capacitor:

v = 10kV $C = 10,000\mu$ F $R_p = 10$ G Ω Discharge Time at Constant Current: q = Cv = 10Coulombs $i(0) = \frac{v}{R_P} = 1\mu$ A $t = \frac{q}{i} = 10^7$ sec = 116 Days Exponential decay will be slower.

"Shorting Bar"

Oct 2021

Chuck DiMarzio, Northeastern University