Electrical Engineering Week 6

Charles A. DiMarzio EECE–2210 Northeastern University

Oct 2021

Week 6 Agenda: Operational Amplifiers

- Linear Effects
 - Input and Output Impedances
 - Finite Gain, A_{OL}
 - Gain-Bandwidth Product
- Nonlinear Effects
 - Voltage Limit
 - Current Limit
 - Slew Rate
- DC Imperfections
 - Bias and Offset Currents
 - Offset Voltage
- Differential Amplifiers

Oct 2021

The Story so Far

- Assume Ideal Linear Operation
 - $-v_{id} = 0$, $v_+ = v_-$ (Virtual short/virtual ground)
 - $-i_{+}=0$ and $i_{-}=0$
 - Calculate v_o to make this happen
 - Solve for any other variable
- Check Validity of Assumptions
 - $-v_o$ Is Between the Rails
 - Currents and Voltages Are "Large Enough"
 - More on that this Week

Oct 2021

Chuck DiMarzio, Northeastern University 12425..slides6r2–2

Op-Amp Impedances

Usually OK

Oct 2021

Impedances in a Circuit

Finite Gain Effects (1)

$$v_{-} = v_{in} + (v_{o} - v_{in}) \frac{R_{1}}{R_{1} + R_{2}}$$

$$-\frac{v_{o}}{A_{OL}} = v_{in} + (v_{o} - v_{in}) \frac{R_{1}}{R_{1} + R_{2}}$$

$$-\frac{v_{o}}{A_{OL}} - v_{o} \frac{R_{1}}{R_{1} + R_{2}} = v_{in} \frac{R_{2}}{R_{1} + R_{2}}$$
multiply by $A_{OL} (R_{1} + R_{2})$

$$-v_{o} (R_{1} + R_{2} + A_{OL}R_{1}) = v_{in}R_{2}A_{OL}$$

$$\frac{v_{o}}{v_{in}} = -\frac{R_{2}A_{OL}}{R_{1} + R_{2} + A_{OL}R_{1}}$$

$$\frac{v_{o}}{v_{in}} = -\frac{R_{2}}{R_{1}} \frac{A_{OL}}{R_{1} + R_{2} + A_{OL} + 1}$$

Chuck DiMarzio, Northeastern University

Finite Gain Effects (2)

Oct 2021

Chuck DiMarzio, Northeastern University

Op-Amp Gain Spectrum

- A_{OL} Varies with Frequency
- $A_{OL}(0)$ is Maximum
- f_{oOL} is Cutoff Frequency

•
$$A_{OL}(f_{oOL}) = \frac{A_{OL}(0)}{\sqrt{2}}$$

• Why Square Root of 2?

Open-Loop Gain Spectrum

Chuck DiMarzio, Northeastern University

Closed–Loop Gain Spectrum

 $A_{CL}f_{0CL} = A_{OL}f_{0OL}$ Gain-Bandwidth Product

Oct 2021

Chuck DiMarzio, Northeastern University

Week 6 Agenda: Operational Amplifiers

- Linear Effects
 - Input and Output Impedances
 - Finite Gain, A_{OL}
 - Gain-Bandwidth Product
- Nonlinear Effects
 - Voltage Limit
 - Current Limit
 - Slew Rate
- DC Imperfections
 - Bias and Offset Currents
 - Offset Voltage
- Differential Amplifiers

Oct 2021

Voltage Limits

Chuck DiMarzio, Northeastern University

Ideal Gain: $-R_2/R_1 = -5$

New Concept: Transfer Function (Plot of output vs. input)

Voltage Limits Example

 \pm 12–Volt Power Rails. Blue dash is ideal. Cyan solid is actual.

Oct 2021

Chuck DiMarzio, Northeastern University

Voltage on -Input

Virtual Ground Fails.

Oct 2021

Chuck DiMarzio, Northeastern University

Gain Saturation Example

Blue in, green out. 1V at 75Hz 5V at 750Hz $R_2/R_1 = 5000/1000$, \pm 12 V rails

Oct 2021

Chuck DiMarzio, Northeastern University

Current Limits

x shows current limit, $I_{max} = 20$ mA at $v = i_{max}R_L \parallel R_2$. $R_L = 500\Omega$, $R_2 = 5$ k Ω

Oct 2021

Chuck DiMarzio, Northeastern University

Slew Rate Limit

Desired voltage, $A_V v_{in}$ in Black varies too fast. Result is Green.

Week 6 Agenda: Operational Amplifiers

- Linear Effects
 - Input and Output Impedances
 - Finite Gain, A_{OL}
 - Gain-Bandwidth Product
- Nonlinear Effects
 - Voltage Limit
 - Current Limit
 - Slew Rate
- DC Imperfections
 - Bias and Offset Currents
 - Offset Voltage
- Differential Amplifiers

Oct 2021

DC Imperfections

Adjustment for v_{off} , Circuit design for currents. Not needed for typical applications.

Oct 2021

Differential Amplifier

 v_2 affects current in v_1 source (try superposition)

Oct 2021

Chuck DiMarzio, Northeastern University

Good Differential Amplifier

Infinite input impedance. Low common-mode gain.

Oct 2021

A Little Review

- Circuit Concepts
- KCL, KVL
- Ohm's Law, Resistivity, Resistance and Geometry
- Series and Parallel Combinations
- Node and Mesh Analysis
- Superposition
- Wheatstone Bridge Circuit
- Op-Amps; Inverting, Non-inverting, Impedances, Limits