Electrical Engineering Week 5

Charles A. DiMarzio EECE–2210 Northeastern University

Sep 2022

Week 5 Agenda: Operational Amplifiers

- Amplifiers
- The Basic Op Amp
- Circuit Equations
- Virtual Short,
 - Virtual Ground
- Negative Feedback
- Inverting Amplifier
- High Gain Amplifier
- Summing Junction
- Postive Feedback Briefly
- Non-Inverting Amplifier
- Other Amplifiers

Chuck DiMarzio, Northeastern University

Why?

- Why Amplifiers?
 - Increase Voltage
 - Increase Current
 - Control Impedance
- Why Now?
 - Prepare for Lab
 - Nice Fit with Equivalent Circuits
- Back to Capcitors and Inductors in 2 Weeks

Sep 2022

Chuck DiMarzio, Northeastern University

An Amplifier Model

We want to Choose A, R_{in} , and R_{out}

Sep 2022

Chuck DiMarzio, Northeastern University

Impedance Choices

Voltage Divider Maximum Voltage to Load

 $R_L \gg R_s$

$$R_L \to \infty \text{ or } R_s \to 0$$

Maximum Power to Load

$$i_L = i = \frac{v_s}{R_s + R_L}$$
$$v_L = v_s \frac{R_L}{R_s + R_L}$$
$$p_L = v_s^2 \frac{R_L}{(R_s + R_L)^2}$$

$$R_L = R_s \qquad P_L = \frac{v_s^2}{4R_L}$$

Input and Output Impedance

Maximum Voltage

$$R_{in} \to \infty$$

 $R_{out} = 0$

Maximum Power

 $R_{in} = R_S$

 $R_{out} = R_L$

- Mix Input and Output Choices as Needed
- Maximum Power to Load for Minimum Reflected Power

Maximum Current

 $R_{in} = 0$

$$R_{out} \to \infty$$

The Operational Amplifier

 $i_{+} = 0$ $i_{-} = 0$ $v_{o} = Av_{id}$ $A \to \infty$ "Common Mode" $((v_+ + v_-)/2)$ Gain is Zero.

Sep 2022

Chuck DiMarzio, Northeastern University 12425..slides5r1–6

Implied Power Supplies

Sep 2022

Chuck DiMarzio, Northeastern University

Ideal Op-Amp Model

 $vo = A_{OL}v_{id}$ and $A_{OL} \rightarrow \infty$ so $v_{id} = 0$. Note open-circuit inputs.

Inverting Amplifier Circuit

Sep 2022

Chuck DiMarzio, Northeastern University

Negative Feedback

if $v_{in} > 0$, then $v_o < 0$, so v_- can be zero. if $v_{in} < 0$, then $v_o > 0$, so v_- can be zero.

Sep 2022

Inverting Amplifier in Lab

Measure Voltage (P-P) Frequency or Period Phase (Now 0 or 180 Deg.)

Inverting Amp Circuit?

Hint: What is i_+ in R_3 ? What is v_+ ? A virtual short circuit is different from a real one.

Sep 2022

Chuck DiMarzio, Northeastern University

Limits on v_o

 $-V_{EE} \le v_o \le V_{CC}$

Chuck DiMarzio, Northeastern University

High Gain (1)

High Gain (2)

$$i_1 = \frac{v_s}{R_1} \qquad i_2 = i_1$$

Current Divider,

Virtual and Real Grounds

$$i_2 = i_4 \frac{R_3}{R_3 + R_2}$$

Series and Parallel Combinations

$$v_{o} = -i_{4} \left[R_{4} + (R_{2} \parallel R_{3}) \right]$$
$$v_{o} = i_{2} \frac{R_{3} + R_{2}}{R_{3}} \left[R_{4} + \frac{R_{2}R_{3}}{R_{2} + R_{3}} \right] = \frac{v_{in}}{R_{1}} \frac{R_{3} + R_{2}}{R_{3}} \left[R_{4} + \frac{R_{2}R_{3}}{R_{2} + R_{3}} \right]$$
$$= v_{in} \frac{R_{4}R_{3} + R_{4}R_{2} + R_{2}R_{3}}{R_{1}R_{3}} = v_{in} \left[\frac{R_{4}}{R_{1}} + \frac{R_{2}}{R_{1}} + \frac{R_{2}R_{4}}{R_{1}R_{3}} \right]$$

High Gain (3)

Example Values

$$\begin{aligned} R_1 &= R_3 = 1 \, \mathrm{k} \Omega & R_L &= R_1 & i_L = 440 i_{in} \\ R_2 &= R_4 = 20 \, \mathrm{k} \Omega & \text{Power Gain} \\ R_L &= 1 \, \mathrm{k} \Omega & v_o i_L = 440^2 v_s i_{in} = 193,600 v_s i_{in} \end{aligned}$$

 $v_o = v_{in} \left| \frac{R_4}{R_1} + \frac{R_2}{R_1} + \frac{R_2 R_4}{R_1 R_3} \right|$

 $v_o = v_{in} (20 + +20 + 400) = 440 v_s$

 $i_{in} = i_1 = \frac{v_s}{R_1}$

 $i_L = \frac{v_o}{R_L} = 440 \frac{v_s}{R_I}$

Chuck DiMarzio, Northeastern University

Summing Junction

$$v_0 = -\left[\frac{R_f}{R_A}v_A + \frac{R_f}{R_B}v_B + \frac{R_f}{R_C}v_C\right]$$

Summing Junction Example

 $R_C = 2.5 \mathrm{k}\Omega$

$$v_0 = -\left[\frac{R_f}{R_A}v_A + \frac{R_f}{R_B}v_B + \frac{R_f}{R_C}v_C\right]$$

Summing Junction

Would this Work Without the Op Amp?

Summing Junction

Would this Work Without the Op Amp?

No. Connect the node v_{-} to R_{L} and remove the amplifier. Calculate the voltage at that node.

Each input circuit's voltage is affected by the other two input circuits.

The virtual ground is what makes this work.

Sep 2022

Positive Feedback (1)

Chuck DiMarzio, Northeastern University

Positive Feedback (2)

 v_0 and v_{in} have the same sign, so v_+ cannot be zero v_0 "goes to the rail." $v_0 = V_{CC}$ or $v_0 = -V_{EE}$ (actually a bit less).

Sep 2022

Chuck DiMarzio, Northeastern University

Positive Feedback (3)

 $v_{+} = v_{in} + (v_o - v_{in}) \frac{R_1}{R_1 + R_2} = v_{in} \frac{R_2}{R_1 + R_2} + v_o \frac{R_1}{R_1 + R_2}$

 v_o is limited by the power rails At what v_{in} does it switch?

 v_{id} is not zero; Virtual ground fails. v_+ has same sign as v_o v_o "goes to the rail."

$$v_{+} = 0$$
$$v_{in} = -v_{rail} \frac{R_1}{R_2}$$

Sep 2022

Chuck DiMarzio, Northeastern University

Positive Feedback (4)

If $v_o = V_{CC}$, then it will not switch until $v_{in} < -V_{CC} \frac{R_1}{R_2}$

If $v_o = -V_{EE}$, then it will not switch until $v_{in} > +V_{EE}\frac{R_1}{R_2}$ The circuit is bistable.

It "remembers" how it was set until it is switched.

Normally, V_{in} could just be postive and negative pulses.

Sep 2022

Non–Inverting Amplifier

$$v_{+} = v_{-} \qquad v_{o} = v_{in} \left(\frac{R_2}{R_1} + 1\right)$$

Chuck DiMarzio, Northeastern University

Voltage Follower

$$v_o = v_{in} = v_s \qquad i_s = 0$$

Sep 2022

Why Voltage Follower?

Here, $v_o = v_s \frac{R_L}{R_L + R_s}$. This is important for small R_L , large R_s . The amplifier provides the needed current.

Sep 2022

Chuck DiMarzio, Northeastern University

Transimpedance Amplifier

 $v_0 = -R_2 i_s$. Useful for photodiodes among other applications

Sep 2022

Chuck DiMarzio, Northeastern University

Speaking of Photodiodes...

Diode: Small reverse current & Large forward current Photodiode: Reverse current increases with optical power.

Sep 2022

Photodiode Curves

Sep 2022

Chuck DiMarzio, Northeastern University

Photodiode Circuit

$$v_d = v_s + \rho_i P_{optical} R_1$$

Photocurrent is Negative

 $v_s < 0$ Red Line

Useful as a detector of light. Negative Bias also helps with speed.

Sep 2022

Chuck DiMarzio, Northeastern University

Solar Cell

 $v_s = 0$ $P_{diode} < 0$ Green Line

Diode is a source of power.

 $R_!$ is the load.

$$P_L = -P_{diode}$$