# Electrical Engineering Week 5 

Charles A. DiMarzio<br>EECE-2210

Northeastern University

Sep 2022

## Week 5 Agenda: Operational Amplifiers

- Amplifiers
- The Basic Op Amp
- Circuit Equations
- Virtual Short,

Virtual Ground


- Negative Feedback
- Inverting Amplifier
- High Gain Amplifier
- Summing Junction
- Postive Feedback Briefly
- Non-Inverting Amplifier
- Other Amplifiers



## Why?

- Why Amplifiers?
- Increase Voltage
- Increase Current
- Control Impedance
- Why Now?
- Prepare for Lab
- Nice Fit with Equivalent Circuits
- Back to Capcitors and Inductors in 2 Weeks

An Amplifier Model


We want to Choose $A, R_{\text {in }}$, and $R_{\text {out }}$

## Impedance Choices



Voltage Divider
Maximum Voltage to Load

$$
\begin{gathered}
R_{L} \gg R_{s} \\
R_{L} \rightarrow \infty \text { or } R_{s} \rightarrow 0
\end{gathered}
$$

Maximum Power to Load

$$
\begin{gathered}
i_{L}=i=\frac{v_{s}}{R_{s}+R_{L}} \\
v_{L}=v_{s} \frac{R_{L}}{R_{s}+R_{L}}
\end{gathered}
$$

$$
p_{L}=v_{s}^{2} \frac{R_{L}}{\left(R_{s}+R_{L}\right)^{2}}
$$

$$
R_{L}=R_{s} \quad P_{L}=\frac{v_{s}^{2}}{4 R_{L}}
$$

## Input and Output Impedance

Maximum Voltage

- Mix Input and Output Choices as Needed
- Maximum Power to Load for Minimum Reflected Power


$$
\begin{aligned}
& R_{\text {in }} \rightarrow \infty \\
& R_{\text {out }}=0
\end{aligned}
$$

Maximum Power

$$
\begin{gathered}
R_{\text {in }}=R_{S} \\
R_{\text {out }}=R_{L}
\end{gathered}
$$

Maximum Current

$$
\begin{aligned}
R_{\text {in }} & =0 \\
R_{\text {out }} & \rightarrow \infty
\end{aligned}
$$

## The Operational Amplifier


"Common Mode" ( $\left.v_{+}+v_{-}\right) / 2$ ) Gain is Zero.

## Implied Power Supplies



## Ideal Op-Amp Model


$v o=A_{O L} v_{i d}$ and $A_{O L} \rightarrow \infty$ so $v_{i d}=0$. Note open-circuit inputs.

## Inverting Amplifier Circuit

$$
I_{+}=0, I_{-}=0, v_{x}=0: \text { Virtual Ground }
$$


$i_{1}=i_{2}$ so $v_{0}=-v_{\text {in }} \frac{R_{2}}{R_{1}}$ or $A_{v}=-\frac{R_{2}}{R_{1}}, R_{\text {in }}=R_{1}, R_{\text {out }}=0$

## Negative Feedback


if $v_{i n}>0$, then $v_{o}<0$, so $v_{-}$can be zero.
if $v_{\text {in }}<0$, then $v_{o}>0$, so $v_{-}$can be zero.

## Inverting Amplifier in Lab




Measure Voltage (P-P) Frequency or Period Phase (Now 0 or 180 Deg.)

## Inverting Amp Circuit?

$R_{1}=500 \mathrm{Ohm}, R_{2}=1 \mathrm{kOhm}, A_{v}=$ ?, $R_{\text {out }}=$ ? $R_{\text {in }}=$ ?


Hint: What is $i_{+}$in $R_{3}$ ? What is $v_{+}$?
A virtual short circuit is different from a real one.

## Limits on $v_{o}$



High Gain (1)


## High Gain (2)



$$
i_{1}=\frac{v_{s}}{R_{1}} \quad i_{2}=i_{1}
$$

Current Divider,
Virtual and Real Grounds

$$
i_{2}=i_{4} \frac{R_{3}}{R_{3}+R_{2}}
$$

Series and Parallel Combinations

$$
\begin{array}{r}
v_{o}=-i_{4}\left[R_{4}+\left(R_{2} \| R_{3}\right)\right] \\
v_{o}=i_{2} \frac{R_{3}+R_{2}}{R_{3}}\left[R_{4}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}\right]=\frac{v_{i n}}{R_{1}} \frac{R_{3}+R_{2}}{R_{3}}\left[R_{4}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}\right] \\
=v_{i n} \frac{R_{4} R_{3}+R_{4} R_{2}+R_{2} R_{3}}{R_{1} R_{3}}=v_{i n}\left[\frac{R_{4}}{R_{1}}+\frac{R_{2}}{R_{1}}+\frac{R_{2} R_{4}}{R_{1} R_{3}}\right]
\end{array}
$$

## High Gain (3)



Example Values

$$
\begin{gathered}
R_{1}=R_{3}=1 \mathrm{k} \Omega \\
R_{2}=R_{4}=20 \mathrm{k} \Omega \\
R_{L}=1 \mathrm{k} \Omega
\end{gathered}
$$

$$
v_{o}=v_{i n}\left[\frac{R_{4}}{R_{1}}+\frac{R_{2}}{R_{1}}+\frac{R_{2} R_{4}}{R_{1} R_{3}}\right]
$$

$$
v_{o}=v_{i n}(20++20+400)=440 v_{s}
$$

$$
i_{i n}=i_{1}=\frac{v_{s}}{R_{1}}
$$

$$
i_{L}=\frac{v_{o}}{R_{L}}=440 \frac{v_{s}}{R_{L}}
$$

$$
R_{L}=R_{1} \quad i_{L}=440 i_{i n}
$$

Power Gain

$$
v_{o} i_{L}=440^{2} v_{s} i_{i n}=193,600 v_{s} i_{i n}
$$

Summing Junction


$$
v_{0}=-\left[\frac{R_{f}}{R_{A}} v_{A}+\frac{R_{f}}{R_{B}} v_{B}+\frac{R_{f}}{R_{C}} v_{C}\right]
$$

## Summing Junction Example

$$
\begin{aligned}
& v_{A, B, C}=0 \text { or } 1 \\
& R_{f}=10 \mathrm{k} \Omega \\
& R_{A}=10 \mathrm{k} \Omega \quad R_{B}=5 \mathrm{k} \Omega \\
& R_{C}=2.5 \mathrm{k} \Omega \\
& v_{0}=-\left[\frac{R_{f}}{R_{A}} v_{A}+\frac{R_{f}}{R_{B}} v_{B}+\frac{R_{f}}{R_{C}} v_{C}\right] \\
& \text { 3-Bit D/A Converter }
\end{aligned}
$$

## Summing Junction



Would this Work Without the Op Amp?

## Summing Junction



Would this Work Without the Op Amp?
No. Connect the node $v_{-}$to $R_{L}$ and remove the amplifier. Calculate the voltage at that node.

Each input circuit's voltage is affected by the other two input circuits.

The virtual ground is what makes this work.

Positive Feedback (1)


## Positive Feedback (2)


$v_{0}$ and $v_{i n}$ have the same sign, so $v_{+}$cannot be zero $v_{0}$ "goes to the rail." $v_{0}=V_{C C}$ or $v_{0}=-V_{E E}$ (actually a bit less).

## Positive Feedback (3)


$v_{i d}$ is not zero;
Virtual ground fails.
$v_{+}$has same sign as $v_{o}$
$v_{o}$ "goes to the rail."

$$
\begin{gathered}
v_{+}=v_{i n}+\left(v_{o}-v_{i n}\right) \frac{R_{1}}{R_{1}+R_{2}}= \\
v_{i n} \frac{R_{2}}{R_{1}+R_{2}}+v_{o} \frac{R_{1}}{R_{1}+R_{2}}
\end{gathered}
$$

$v_{o}$ is limited by the power rails At what $v_{i n}$ does it switch?

$$
v_{+}=0
$$

$$
v_{i n}=-v_{r a i l} \frac{R_{1}}{R_{2}}
$$

## Positive Feedback (4)



If $v_{o}=V_{C C}$, then it will not switch until $v_{i n}<-V_{C C} \frac{R_{1}}{R_{2}}$
If $v_{o}=-V_{E E}$, then it will not switch until $v_{i n}>+V_{E E} \frac{R_{1}}{R_{2}}$
The circuit is bistable.
It "remembers" how it was set until it is switched.
Normally, $V_{i n}$ could just be postive and negative pulses.

## Non-Inverting Amplifier



$$
v_{+}=v_{-} \quad v_{o}=v_{i n}\left(\frac{R_{2}}{R_{1}}+1\right)
$$

## Voltage Follower



$$
v_{o}=v_{i n}=v_{s} \quad i_{s}=0
$$

## Why Voltage Follower?



Here, $v_{o}=v_{s} \frac{R_{L}}{R_{L}+R_{s}}$. This is important for small $R_{L}$, large $R_{s}$. The amplifier provides the needed current.

## Transimpedance Amplifier


$v_{0}=-R_{2} i_{s}$. Useful for photodiodes among other applications

## Speaking of Photodiodes...



Diode: Small reverse current \& Large forward current Photodiode: Reverse current increases with optical power.

## Photodiode Curves



Diode (Top Curve); $i_{d}=I_{s}\left(-1+e^{v_{d} / V_{T}}\right)$
Photocurrent adds: $i_{\text {photo }}=-\rho_{i} P_{\text {optical }}$ (Lower Lines).

## Photodiode Circuit



$$
v_{d}=v_{s}+\rho_{i} P_{\text {optical }} R_{1}
$$

Photocurrent is Negative

$$
v_{s}<0 \quad \text { Red Line }
$$

Useful as a detector of light. Negative Bias also helps with speed.

## Solar Cell



$$
v_{s}=0 \quad P_{\text {diode }}<0 \quad \text { Green Line }
$$

Diode is a source of power. $R_{!}$is the load.

$$
P_{L}=-P_{\text {diode }}
$$

