Electrical Engineering Week 4

Charles A. DiMarzio EECE–2210 Northeastern University

Sep 2022

Week 4 Agenda

- Mesh Analysis
- Thévenin Equivalent Circuits
- Norton Equivalent Circuits
- Solutions Using Superposition
- Wheatstone Bridge

Mesh Analysis

Chuck DiMarzio, Northeastern University

Remember Node Analysis

Mesh Analysis Problem of Dependent Source

Superloop 1,2

 $v_s - i_1 R_1 + i_3 R_1 - i_2 R_2 + i_3 R_2 - i_2 R_4$

= 0

 $\mathbf{x} = \begin{pmatrix} v_A \\ v_B \end{pmatrix} = \begin{pmatrix} 10 \\ 2 \end{pmatrix} \text{Volts}$

Loop 3

 $i_3R_3 + (i_3 - i_2)R_2 + (i_3 - i_1)R_1 = 0$

Chuck DiMarzio, Northeastern University

Example of Mesh Analysis

Dependent Source

$$A(i_1 - i_3) = i_2 - i_1$$
$$(A + 1)i_1 - i_2 - Ai_3 = 0$$
Previous Page
$$v_s - i_1R_1 + i_3R_1 - i_2R_2 + i_3R_2 - i_2R_4 = 0$$

$$i_3R_3 + (i_3 - i_2)R_2 + (i_3 - i_1)R_1 = 0$$

Reorder

 v_s

$$(A+1)\,i_1 - i_2 - Ai_3 = 0$$

 $-R_1i_1 - (R_2 + R_4)i_2 + (R_1 + R_2)i_3 = -v_s$

$$-R_1i_1 - R_2i_2 + (R_1 + R_2 + R_3)i_3 = 0$$

Chuck DiMarzio, Northeastern University

$$V_s = 12V \qquad A = 3$$
$$R_1 = R_2 = 1k\Omega$$
$$R_3 = 5k\Omega$$
$$R_4 = 200\Omega$$

Mesh Analysis Solution

Previous Page

$$(A+1)i_{1} - i_{2} - Ai_{3} = 0$$
$$-R_{1}i_{1} - (R_{2} + R_{4})i_{2} + (R_{1} + R_{2})i_{3} = -v_{s}$$
$$-R_{1}i_{1} - R_{2}i_{2} + (R_{1} + R_{2} + R_{3})i_{3} = 0$$
$$\mathcal{M}\begin{pmatrix}i_{1}\\i_{2}\\i_{3}\end{pmatrix} = \begin{pmatrix}0\\-v_{s}\\0\end{pmatrix}$$

$$V_{s} = 12V \qquad A = 3$$
$$R_{1} = R_{2} = 1k\Omega$$
$$R_{3} = 5k\Omega$$
$$R_{4} = 200\Omega$$

Matlab Mesh Results

• •

vBcheck = 2

 $V_s = 12V \qquad A = 3$ $R_1 = R_2 = 1k\Omega$ $R_3 = 5k\Omega$ $R_4 = 200\Omega$

Node Solution

$$\begin{pmatrix} v_A \\ v_B \end{pmatrix} = \begin{pmatrix} 10 \\ 2 \end{pmatrix}$$
Volts

>> vAcheck=vBcheck+x(2)*R2-x(3)*R2

Chuck DiMarzio, Northeastern University

Thévenin Equivalent Circuit

 R_4 is the Load: Draw a circuit for everything else.

Linear Circuits: *i vs.* v is a straight line.

We need two points to determine the line.

i = 0: Open Circuit Voltage. v = 0: Short-Circuit Current

Load Resistor:
$$i = \frac{v}{R_4}$$

Solution: Voltage Divider

Everything Else: $i = \frac{v_T - v}{R_T}$

Chuck DiMarzio, Northeastern University

Thévenin Concept

$$i = \frac{\sigma_I}{R_T}$$
Load Line

 $i = \frac{v}{R}$

Solution is at the interesection.

Chuck DiMarzio, Northeastern University

Thévenin Calculation

- Calculate Open-Circuit Voltage, voc.
- Calculate Short–Circuit Current, *i*_{sc}.
- Find Equivalent Circuit, $v_T = v_{oc}$ and $R_T = \frac{v_{oc}}{i_{sc}}$.

Chuck DiMarzio, Northeastern University 12

Zeroing All Sources

Alternative to Compute R_T Voltage Sources Shorted (v = 0) Current Sources Opened (i = 0) Use Series and Parallel Combinations Do This if v_{oc} or i_{sc} Looks Messy.

In This Example, $R_T = (R_1 + R_2) || R_3 = 1430$ Ohms

Chuck DiMarzio, Northeastern University

Thévenin Example: Parallel Batteries

Chuck DiMarzio, Northeastern University 12

Parallel Batteries Solution

 $V_1 = 12V, R_1 = 1\Omega, V_2 = 11.9V, R_2 = 3\Omega$

Chuck DiMarzio, Northeastern University

Norton Equivalent Circuit

 R_4 is the Load: Draw a circuit for everything else.

Linear Circuits: *i vs.* v is a straight line.

We need two points to determine the line.

i = 0: Open Circuit Voltage. v = 0: Short-Circuit Current

Load Resistor: $i = \frac{v}{R_A}$

Solution: Current Divider

Everything Else: $i = i_N - \frac{v}{R_N}$

Chuck DiMarzio, Northeastern University

Norton Example

From Thévenin Equivalent

$$v_{oc} = 11.97 V$$
 $R_T = 0.75 \Omega$
 $i_{sc} = \frac{v_1}{R_1} + \frac{v_2}{R_2} = \frac{v_1 R_2 + v_2 R_1}{R_1 R_2} = 15.96 A$

Norton Equivalent

$$i_N = i_{sc} = 15.96 \text{A}$$
 $R_N = R_T = 0.75 \Omega$

Superposition Example

Chuck DiMarzio, Northeastern University 1

Zeroing Sources

- Zero the Sources One at a Time
- Solve the Circuit for All Unknowns in Each Case
- Sum the Results

Superposition Solution

Series–Parallel Solution

$$i = v_s / [(R_1 + R_2) \parallel R_3] + R_4$$

$$v_B = iR_4$$

Voltage Divider

$$v_A = v_s + (v_B - v_s) \frac{R_1}{R_1 + R_2}$$

Series–Parallel Solution

 $v_A = i_s \{ R_1 \parallel [R_2 + (R_3 \parallel R_4)] \}$ Current Divider (*i*₂ to the right)

$$i_{2} = i_{s} \frac{R_{1}}{R_{1} + R_{2} + (R_{3} \parallel R_{4})}$$
$$v_{B} = i_{2} (R_{3} \parallel R_{4})$$

Chuck DiMarzio, Northeastern University

Conclusion

$$V_A = 10.0 V$$
 $V_B = 2.0 V$

Same Result We Had Before.

Parallel Batteries: Superposition

 $V_1 = 12V, R_1 = 1\Omega, V_2 = 11.9V, R_2 = 3\Omega$

Chuck DiMarzio, Northeastern University

Balancing the Load

Source: $v_s = 120V$ RMS. Bad Ground: $R_0 = 20\Omega$ Lights: $R_1 = 14.4\Omega$, $R_2 = 144\Omega$. Stove: $R_3 = R_4 = 7.2\Omega$.

Chuck DiMarzio, Northeastern University

Stove Off

Voltage Divider with Top Source: Zero Bottom so $R_2 \parallel R_0$

$$v_1 = v_s \frac{R_1}{R_1 + (R_0 \parallel R_2)}$$
 $v_2 = v_s \frac{R_0 \parallel R_2}{R_1 + (R_0 \parallel R_2)}$

Bottom Source: Zero Top so $R_1 \parallel R_0$

$$v_1 = -v_s \frac{R_1 \parallel R_0}{R_2 + (R_0 \parallel R_1)} \qquad v_2 = -v_s \frac{R_2}{R_2 + (R_0 \parallel R_1)}$$

Total

$$v_1 = 60.7 \lor v_2 = 179.3 \lor$$
 Check $v_1 + v_2 = 240 \lor$
 $v_A = 120 \lor v_B = -120 \lor v_0 = v_A - v_1 = 59.3 \lor$

Stove On: Balance Load

Same as Previous Page, but with $R_1 \parallel R_3$ and $R_2 \parallel R_4$

Top Source $v_{1} = v_{s} \frac{R_{1} \| R_{3}}{(R_{1} \| R_{3}) + (R_{0} \| R_{2} \| R_{4})}$ $v_{2} = v_{s} \frac{R_{0} \| R_{2} \| R_{4}}{(R_{1} \| R_{3}) + (R_{0} \| R_{2} \| R_{4})}$ Bottom Source $v_{1} = -v_{s} \frac{R_{1} \| R_{3} \| R_{0}}{(R_{2} \| R_{4}) + (R_{0} \| R_{1} \| R_{3})}$ $v_{2} = -v_{s} \frac{R_{2} \| R_{4}}{(R_{2} \| R_{4}) + (R_{0} \| R_{1} \| R_{3})}$ Total

 $v_1 = 101.4 \lor$ $v_2 = 138.6 \lor$ Check $v_1 + v_2 = 240 \lor$ $v_A = 120 \lor$ $v_B = -120 \lor$ $v_0 = v_A - v_1 = 18.6 \lor$

Comparison

Stove Off

 $v_1 = 60.7 \vee v_2 = 179.3 \vee$

 $v_A = 120 \lor v_B = -120 \lor v_0 = v_A - v_1 = 59.3 \lor$

Lights Represented by R_1 Are Dim Lights Represented by R_2 Are Too Bright

Stove On

 $v_1 = 101.4 \vee v_2 = 138.6 \vee$

 $v_A = 120V$ $v_B = -120V$ $v_0 = v_A - v_1 = 18.6V$

Lights Represented by R_1 Become Brighter Lights Represented by R_2 Become Dimmer Better Balance "Ground" Voltage, v_0 , Closer to Zero

Wheatstone Bridge

Chuck DiMarzio, Northeastern University

Balancing the Bridge

$$v_{A} = v_{s} \frac{R_{2}}{R_{1} + R_{2}}$$
$$v_{B} = v_{s} \frac{R_{3}}{R_{3} + R_{4}}$$
$$v_{BA} = v_{s} \left(\frac{R_{2}}{R_{1} + R_{2}} - \frac{R_{3}}{R_{3} + R_{4}}\right)$$

Application:

- R_4 is Unknown
- R_2 is Variable and Calibrated
- R_1 and R_3 are Precision Resistors
- Adjust for $V_{BA} = 0$
- Solve for R_4

Strain Gauge

- R_4 is a Strain Guage
- $R_4 = R_0 + \Delta R$
- $R_{1:3} = R_0$ Precision Resistors
- Calculate v_{AB}

$$v_{BA} = v_s \left(\frac{R_0}{2R_0} - \frac{R_0 + \Delta R}{2R_0 + \Delta R} \right)$$
$$v_{BA} = v_s \left(\frac{1}{2} - \frac{R_0 + \Delta R}{2R_0 + \Delta R} \right)$$
$$v_{BA} \approx v_s \left(\frac{1}{2} - \frac{R_0 + \Delta R}{2R_0} \right)$$
$$v_{BA} \approx -v_s \frac{\Delta R}{2R_0}$$

4 Balanced Strain Gauges

- $R_1 = R_4 = R_0 + \Delta R$ Are Strain Guage
- $R_2 = R_3 = R_0 + \Delta R$ Measure Opposite Strain
- Calculate v_{AB}

$$v_{BA} = v_s \left(\frac{R_0 + \Delta R}{2R_0} - \frac{R_0 - \Delta R}{2R_0} \right)$$

$$v_{BA} = v_s \frac{2\Delta R}{2R_0}$$

$$v_{BA} = v_s \frac{\Delta R}{R_0}$$

May Need a Variable to Get a Good Null

