Electrical Engineering Week 4

Charles A. DiMarzio
EECE-2210

Northeastern University

Sep 2022

Week 4 Agenda

- Mesh Analysis
- Thévenin Equivalent Circuits
- Norton Equivalent Circuits
- Solutions Using Superposition
- Wheatstone Bridge

Mesh Analysis

Solve Circuits Using KVL Around All Loops

Remember Node Analysis

$\mathrm{x}=\binom{v_{A}}{v_{B}}=\binom{10}{2}$ Volts

Mesh Analysis
Problem of Dependent Source

Superloop 1,2
$v_{s}-i_{1} R_{1}+i_{3} R_{1}-i_{2} R_{2}+i_{3} R_{2}-i_{2} R_{4}$

$$
=0
$$

Loop 3
$i_{3} R_{3}+\left(i_{3}-i_{2}\right) R_{2}+\left(i_{3}-i_{1}\right) R_{1}=0$

Example of Mesh Analysis

Dependent Source

$$
\begin{gathered}
A\left(i_{1}-i_{3}\right)=i_{2}-i_{1} \\
(A+1) i_{1}-i_{2}-A i_{3}=0
\end{gathered}
$$

Previous Page

$$
\begin{gathered}
V_{s}=12 \mathrm{~V} \quad A=3 \\
R_{1}=R_{2}=1 k \Omega \\
R_{3}=5 k \Omega \\
R_{4}=200 \Omega
\end{gathered}
$$

$$
\begin{gathered}
v_{s}-i_{1} R_{1}+i_{3} R_{1}-i_{2} R_{2}+i_{3} R_{2}-i_{2} R_{4}=0 \\
i_{3} R_{3}+\left(i_{3}-i_{2}\right) R_{2}+\left(i_{3}-i_{1}\right) R_{1}=0
\end{gathered}
$$

Reorder

$$
\begin{gathered}
(A+1) i_{1}-i_{2}-A i_{3}=0 \\
-R_{1} i_{1}-\left(R_{2}+R_{4}\right) i_{2}+\left(R_{1}+R_{2}\right) i_{3}=-v_{s} \\
-R_{1} i_{1}-R_{2} i_{2}+\left(R_{1}+R_{2}+R_{3}\right) i_{3}=0
\end{gathered}
$$

Mesh Analysis Solution

$$
\begin{aligned}
& \text { Previous Page } \\
& \qquad \begin{array}{cc}
(A+1) i_{1}-i_{2}-A i_{3}=0 & R_{1}=R_{2}=12 \mathrm{k} \Omega \\
-R_{1} i_{1}-\left(R_{2}+R_{4}\right) i_{2}+\left(R_{1}+R_{2}\right) i_{3}=-v_{s} & R_{4}=200 \Omega \\
-R_{1} i_{1}-R_{2} i_{2}+\left(R_{1}+R_{2}+R_{3}\right) i_{3}=0 & \\
\mathcal{M}\left(\begin{array}{c}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-v_{s} \\
0
\end{array}\right) & V_{s}=1
\end{array}
\end{aligned}
$$

Matlab Mesh Results

```
>> vs=12;A=3;R1=1000;R2=R1;...
R3=5000;R4=200;y=[0;-vs;0];
>> M=[A+1,-1,-A;...
-R1,-(R2+R4),R1+R2;...
-R1,-R2,R1+R2+R3]
M =
\begin{tabular}{rrr}
4 & -1 & -3 \\
-1000 & -1200 & 2000 \\
-1000 & -1000 & 7000
\end{tabular}
>> x=inv(M)*y
x =
    0.0040
    0.0100
    0.0020
>> vBcheck=x(2)*R4
vBcheck = 2
```

$$
\begin{aligned}
& V_{s}=12 \mathrm{~V} \quad A=3 \\
& R_{1}=R_{2}=1 k \Omega \\
& R_{3}=5 k \Omega \\
& R_{4}=200 \Omega
\end{aligned}
$$

Node Solution

$$
\binom{v_{A}}{v_{B}}=\binom{10}{2} \text { Volts }
$$

>> vAcheck=vBcheck+x(2)*R2-x(3)*R2
vAcheck = 10

Thévenin Equivalent Circuit

R_{4} is the Load: Draw a circuit for everything else.
Linear Circuits: i vs. v is a straight line.
We need two points to determine the line.
$i=0$: Open Circuit Voltage. $v=0$: Short-Circuit Current
Load Resistor: $i=\frac{v}{R_{4}}$
Solution: Voltage Divider
Everything Else: $i=\frac{v_{T}-v}{R_{T}}$

Thévenin Concept

Circuit Equation
$i=\frac{v_{T}-v}{R_{T}}$
Load Line

Solution is at the interesection.

Thévenin Calculation

- Calculate Open-Circuit Voltage, $v_{o c}$.
- Calculate Short-Circuit Current, $i_{s c}$.
- Find Equivalent Circuit, $v_{T}=v_{o c}$ and $R_{T}=\frac{v_{o c}}{i_{s c}}$.

Zeroing All Sources

Alternative to Compute R_{T}
Voltage Sources Shorted ($v=0$)
Current Sources Opened ($i=0$)
Use Series and Parallel Combinations
Do This if $v_{o c}$ or $i_{s c}$ Looks Messy.
In This Example, $R_{T}=\left(R_{1}+R_{2}\right) \| R_{3}=14300 \mathrm{hms}$

Thévenin Example: Parallel Batteries

Parallel Batteries Solution

$$
V_{1}=12 \mathrm{~V}, R_{1}=1 \Omega, V_{2}=11.9 \mathrm{~V}, R_{2}=3 \Omega
$$

Voltage Divider

$$
\begin{gathered}
v_{o c}=v_{1}-\left(v_{1}-v_{2}\right) \frac{R_{1}}{R_{1}+R_{2}} \\
v_{1} \frac{R_{2}}{R_{1}+R_{2}}+v_{2} \frac{R_{1}}{R_{1}+R_{2}} \\
=\frac{v_{1} R_{2}+V_{2} R_{1}}{R_{1}+R_{2}} \\
=11.97 \mathrm{~V}
\end{gathered}
$$

KCL

$$
i_{s c}=\frac{v_{1}}{R_{1}}+\frac{v_{2}}{R_{2}}=\frac{v_{1} R_{2}+v_{2} R_{1}}{R_{1} R_{2}}
$$

Thévenin Resistor

$$
R_{T}=\frac{v_{o c}}{i_{s c}}=0.75 \Omega
$$

Norton Equivalent Circuit

R_{4} is the Load: Draw a circuit for everything else.
Linear Circuits: i vs. v is a straight line.
We need two points to determine the line.
$i=0$: Open Circuit Voltage. $v=0$: Short-Circuit Current
Load Resistor: $i=\frac{v}{R_{4}}$
Solution: Current Divider
Everything Else: $i=i_{N}-\frac{v}{R_{N}}$

Norton Example

From Thévenin Equivalent

$$
\begin{gathered}
v_{o c}=11.97 \mathrm{~V} \quad R_{T}=0.75 \Omega \\
i_{s c}=\frac{v_{1}}{R_{1}}+\frac{v_{2}}{R_{2}}=\frac{v_{1} R_{2}+v_{2} R_{1}}{R_{1} R_{2}}=15.96 \mathrm{~A}
\end{gathered}
$$

Norton Equivalent

$$
i_{N}=i_{s c}=15.96 \mathrm{~A} \quad R_{N}=R_{T}=0.75 \Omega
$$

Superposition Example

Zeroing Sources

Original

Zero Current Source Open

Zero Voltage Source
Short

- Zero the Sources One at a Time
- Solve the Circuit for All Unknowns in Each Case
- Sum the Results

Superposition Solution

Series-Parallel Solution

$$
\begin{gathered}
i=v_{s} /\left[\left(R_{1}+R_{2}\right) \| R_{3}\right]+R_{4} \\
v_{B}=i R_{4}
\end{gathered}
$$

Voltage Divider

$$
v_{A}=v_{s}+\left(v_{B}-v_{s}\right) \frac{R_{1}}{R_{1}+R_{2}}
$$

Series-Parallel Solution

$$
v_{A}=i_{s}\left\{R_{1} \|\left[R_{2}+\left(R_{3} \| R_{4}\right)\right]\right\}
$$

Current Divider (i_{2} to the right)

$$
\begin{gathered}
i_{2}=i_{s} \frac{R_{1}}{R_{1}+R_{2}+\left(R_{3} \| R_{4}\right)} \\
v_{B}=i_{2}\left(R_{3} \| R_{4}\right)
\end{gathered}
$$

Conclusion

$$
V_{s}=12 \mathrm{~V}, i_{s}=6 \mathrm{~mA}, R_{1}=R_{2}=1 \mathrm{k} \Omega, R_{3}=5 \mathrm{k} \Omega, R_{4}=200 \Omega
$$

$$
\begin{gathered}
v_{2} \\
v_{A}=3.26 \mathrm{~V} \\
v_{B}=0.53 \mathrm{~V}
\end{gathered}
$$

$$
V_{A}=10.0 \mathrm{~V} \quad V_{B}=2.0 \mathrm{~V}
$$

Same Result We Had Before.

Parallel Batteries: Superposition

$$
V_{1}=12 \mathrm{~V}, R_{1}=1 \Omega, V_{2}=11.9 \mathrm{~V}, R_{2}=3 \Omega
$$

$v_{L}=v_{1} \frac{R_{L} \| R_{2}}{R_{1}+\left(R_{L} \| R_{2}\right)}=7.83 \mathrm{~V}$

$$
v_{L}=7.83 \mathrm{~V}+2.59 \mathrm{~V}=10.4 \mathrm{~V}
$$

Balancing the Load

Source: $v_{s}=120 V$ RMS. Bad Ground: $R_{0}=20 \Omega$
Lights: $R_{1}=14.4 \Omega, R_{2}=144 \Omega$. Stove: $R_{3}=R_{4}=7.2 \Omega$.

Stove Off

Voltage Divider with Top Source: Zero Bottom so $R_{2} \| R_{0}$

$$
v_{1}=v_{s} \frac{R_{1}}{R_{1}+\left(R_{0} \| R_{2}\right)} \quad v_{2}=v_{s} \frac{R_{0} \| R_{2}}{R_{1}+\left(R_{0} \| R_{2}\right)}
$$

Bottom Source: Zero Top so $R_{1} \| R_{0}$

$$
v_{1}=-v_{s} \frac{R_{1} \| R_{0}}{R_{2}+\left(R_{0} \| R_{1}\right)} \quad v_{2}=-v_{s} \frac{R_{2}}{R_{2}+\left(R_{0} \| R_{1}\right)}
$$

Total

$$
\begin{array}{lll}
v_{1}=60.7 \mathrm{~V} & v_{2}=179.3 \mathrm{~V} & \text { Check } v_{1}+v_{2}=240 \mathrm{~V} \\
v_{A}=120 \mathrm{~V} & v_{B}=-120 \mathrm{~V} & v_{0}=v_{A}-v_{1}=59.3 \mathrm{~V}
\end{array}
$$

Stove On: Balance Load

Same as Previous Page, but with $R_{1} \| R_{3}$ and $R_{2} \| R_{4}$
Top Source
$v_{1}=v_{s} \frac{R_{1} \| R_{3}}{\left(R_{1} \| R_{3}\right)+\left(R_{0}\left\|R_{2}\right\| R_{4}\right)}$

$$
v_{2}=v_{s} \frac{R_{0}\left\|R_{2}\right\| R_{4}}{\left(R_{1} \| R_{3}\right)+\left(R_{0}\left\|R_{2}\right\| R_{4}\right)}
$$

Bottom Source
$v_{1}=-v_{s} \frac{R_{1}\left\|R_{3}\right\| R_{0}}{\left(R_{2} \| R_{4}\right)+\left(R_{0}\left\|R_{1}\right\| R_{3}\right)}$

Total

$$
v_{2}=-v_{s} \frac{R_{2} \| R_{4}}{\left(R_{2} \| R_{4}\right)+\left(R_{0}\left\|R_{1}\right\| R_{3}\right)}
$$

$$
\begin{array}{ccc}
v_{1}=101.4 \mathrm{~V} & v_{2}=138.6 \mathrm{~V} & \text { Check } v_{1}+v_{2}=240 \mathrm{~V} \\
v_{A}=120 \mathrm{~V} & v_{B}=-120 \mathrm{~V} & v_{0}=v_{A}-v_{1}=18.6 \mathrm{~V}
\end{array}
$$

Comparison

Stove Off

$$
\begin{array}{ll}
v_{1}=60.7 \mathrm{~V} & v_{2}=179.3 \mathrm{~V} \\
v_{A}=120 \mathrm{~V} & v_{B}=-120 \mathrm{~V}
\end{array}
$$

Lights Represented by R_{1} Are Dim
Lights Represented by R_{2} Are Too Bright
Stove On

$$
\begin{array}{ll}
v_{1}=101.4 \mathrm{~V} & v_{2}=138.6 \mathrm{~V} \\
v_{A}=120 \mathrm{~V} & v_{B}=-120 \mathrm{~V}
\end{array}
$$

Lights Represented by R_{1} Become Brighter
Lights Represented by R_{2} Become Dimmer
Better Balance
"Ground" Voltage, v_{0}, Closer to Zero

Wheatstone Bridge

Balancing the Bridge

$$
\begin{gathered}
v_{A}=v_{s} \frac{R_{2}}{R_{1}+R_{2}} \\
v_{B}=v_{s} \frac{R_{3}}{R_{3}+R_{4}} \\
v_{B A}=v_{s}\left(\frac{R_{2}}{R_{1}+R_{2}}-\frac{R_{3}}{R_{3}+R_{4}}\right)
\end{gathered}
$$

Application:

- R_{4} is Unknown
- R_{2} is Variable and Calibrated
- R_{1} and R_{3} are Precision Resistors
- Adjust for $V_{B A}=0$
- Solve for R_{4}

Strain Gauge

- R_{4} is a Strain Guage
- $R_{4}=R_{0}+\Delta R$
- $R_{1: 3}=R_{0}$ Precision Resistors
- Calculate $v_{A B}$

$$
\begin{gathered}
v_{B A}=v_{s}\left(\frac{R_{0}}{2 R_{0}}-\frac{R_{0}+\Delta R}{2 R_{0}+\Delta R}\right) \\
v_{B A}=v_{s}\left(\frac{1}{2}-\frac{R_{0}+\Delta R}{2 R_{0}+\Delta R}\right) \\
v_{B A} \approx v_{s}\left(\frac{1}{2}-\frac{R_{0}+\Delta R}{2 R_{0}}\right) \\
v_{B A} \approx-v_{s} \frac{\Delta R}{2 R_{0}}
\end{gathered}
$$

4 Balanced Strain Gauges

- $R_{1}=R_{4}=R_{0}+\Delta R$ Are Strain Guage
- $R_{2}=R_{3}=R_{0}+\Delta R$ Measure Opposite Strain
- Calculate $v_{A B}$

$$
\begin{gathered}
v_{B A}=v_{s}\left(\frac{R_{0}+\Delta R}{2 R_{0}}-\frac{R_{0}-\Delta R}{2 R_{0}}\right) \\
v_{B A}=v_{s} \frac{2 \Delta R}{2 R_{0}} \\
v_{B A}=v_{s} \frac{\Delta R}{R_{0}}
\end{gathered}
$$

May Need a Variable to Get a Good Null

