Electrical Engineering Week 3

Charles A. DiMarzio
EECE-2210

Northeastern University

Aug 2020

Week 3 Agenda

- First Lab, Tuesday, Thursday, or Friday
- Resistors in Series
- Resistors in Parallel
- Equivalent Resistors
- Power in Resistor Combinations
- Voltage Dividers
- Current Dividers
- Node Analysis

Resistors in Series (1)

$$
\begin{aligned}
V & =V_{1}+V_{2}+V_{3} \quad \mathrm{KVL} \\
\frac{V}{i} & =\frac{V_{1}}{i}+\frac{V_{2}}{i}+\frac{V_{3}}{i} \\
R & =R_{1}+R_{2}+R_{3}
\end{aligned}
$$

Resistors in Series (2)

$$
R=R_{1}+R_{2}+R_{3}
$$

Resistors in Series: Examples

Two $1 k \Omega$ Resistors in Series

$$
\begin{gathered}
R=R_{1}+R_{2} \\
R=2 R_{1} \\
R=2 \mathrm{k} \Omega
\end{gathered}
$$

One Large Resistor and One Much Smaller

$$
\begin{gathered}
R=R_{1}+R_{2} \\
R \approx \operatorname{Max}\left(R_{n}\right)
\end{gathered}
$$

$$
\text { For Example } R_{2}=R_{1} / 10 \quad R=0.91 R_{1} \quad(10 \% \text { error })
$$

Resistors in Parallel (1)

$$
\begin{aligned}
i & =i_{1}+i_{2}+i_{3} \quad \mathrm{KCL} \\
\frac{i}{V} & =\frac{i_{1}}{V}+\frac{i_{2}}{V}+\frac{i_{3}}{V} \\
\frac{1}{R} & =\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
\end{aligned}
$$

Resistors in Parallel (2)

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

Parallel-Resistor Equations

$$
\begin{aligned}
R & =R_{1} \| R_{2} \\
\frac{1}{R} & =\frac{1}{R_{1}}+\frac{1}{R_{2}} \\
R & =\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}} \\
R & =\frac{R_{1} R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

Conductances Add

$$
G=G_{1}+G_{2}
$$

Resistors in Parallel: Example

Two $1 \mathrm{k} \Omega$ Resistors in Parallel

$$
\begin{gathered}
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\
R=\frac{R_{1}}{2} \\
R=500 \Omega
\end{gathered}
$$

One Large Resistor and One Much Smaller

$$
\begin{aligned}
& \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\
& R \approx \operatorname{Min}\left(R_{n}\right)
\end{aligned}
$$

Example: Ladder Network

Infinite Network: Equivalent Resistor? ($R_{1}=R_{2}=R_{3}=50 \Omega$)
Assume the Answer is R
Add One More Link

$$
\begin{gathered}
R=R_{1}+\left(R_{2} \| R\right)+R_{3} \\
R=R_{1}+\frac{R_{2} R}{R_{2}+R}+R_{3} \\
R\left(R_{2}+R\right)=R_{1}\left(R_{2}+R\right)+R_{2} R+R_{3}\left(R_{2}+R\right) \\
R\left(R_{2}+R-R_{1}-R_{2}-R_{3}\right)=R_{1} R_{2}+R_{3} R_{2}
\end{gathered}
$$

Ladder Solution

Previous Page

$$
\begin{gathered}
R\left(R_{2}+R-R_{1}-R_{2}-R_{3}\right)=R_{1} R_{2}+R_{3} R_{2} \\
R^{2}-R\left(R_{1}+R_{3}\right)-R_{1} R_{2}+R_{3} R_{2}=0
\end{gathered}
$$

Possible Solutions

$$
R=\frac{\left(R_{1}+R_{3}\right) \pm \sqrt{\left(R_{1}+R_{3}\right)^{2}+4 R_{2}\left(R_{1}+R_{3}\right)}}{2}
$$

For All 50Ω Resistors, $R=137 \Omega$ (Failed Solution, $R=-37 \Omega$)

Power Issues

What Resistors to Use?
$R=1000$, All Resistors Equal

$$
R_{1: 4}=?
$$

What is the Power in Each Resistor as a Fraction of the Total?

$$
\frac{P_{n}}{P_{\text {total }}}=?
$$

What if I leave out the vertical wire in the middle?

Equivalent Resistance (1)

$$
\begin{gathered}
{\left[R_{1}+R_{6}\right] \|\left[R_{2}+R_{3}+\left(R_{4} \| R_{5}\right)\right]} \\
R_{n}=50 \Omega \quad \text { All } n \\
R=[50+50] \|[50+50+25] \\
R=55.6 \Omega
\end{gathered}
$$

Equivalent Resistance (2)

$$
\begin{gathered}
{\left[R_{1} \|\left(R_{2}+R_{3}\right)\right]+\left[R_{4}\left\|R_{5}\right\| R_{6}\right]} \\
R_{n}=50 \Omega \quad \text { All } n \\
R=[50 \|(100)]+[50 / 3] \\
R=50 \Omega
\end{gathered}
$$

Series and Parallel

Series

- Voltage Sources Add
- Current Sources Fail
- Resistors Add

Parallel

- Voltage Sources Fail
- Current Sources Add
- Resistors Add Inverses

Voltage Divider

Current Divider

A Tricky One (1)

Reduce Using Series \& Parallel Combinations: $v_{1,2}=12 \mathrm{~V}, R_{n}=100 \Omega$

A Tricky One (2)

Reduce Using Series \& Parallel Combinations: $v_{1,2}=12 \mathrm{~V}, R_{n}=100 \Omega$

A Tricky One (3)

$i_{4}=24 \mathrm{~V} / 150 \Omega=160 \mathrm{~mA}$

A Tricky One (4)

Voltage Divider: $v_{A}=-12 \mathrm{~V}+24 \mathrm{~V} \times 50 / 150=-4 \mathrm{~V} ; i_{n}$ are easy.

Solve the Circuit

Solve With $\quad v_{A}=12 \mathrm{~V} \quad v_{B}=0$
Remember $R_{n}=50 \Omega$ for All $n \quad \rightarrow \quad R=50 \Omega$
Solution (Current Divider)

$$
\begin{gathered}
i=\frac{12 \mathrm{~V}}{50 \Omega}=240 \mathrm{~mA} \quad i_{1}=160 \mathrm{~mA} \quad i_{2}=80 \mathrm{~mA} \\
i_{4,5,6}=80 \mathrm{~mA}
\end{gathered} v_{\text {crossbar }}=80 \mathrm{~mA} \times 50 \Omega=4 \mathrm{~V}
$$

Volume Control

1

2

3
https://www.tubesandmore.com/sites/default/files/uc_products/
3: https://www.bazaargadgets.com/image/cache/catalog/products/electronics/arduino/

Would this make a good light dimmer switch?

Current Divider

What Happens if One Burns Out

Current Divider

No Big Deal; $R_{1,2} \gg \sum R_{w}+R_{s}$
Otherwise Remaining Light Brightens

Power in Ladder

Use $v=13.7 \mathrm{~V}$: Remember For All 50Ω Resistors, $R=137 \Omega$

$$
i=\frac{v}{R}=100 \mathrm{~mA} \quad p_{1}=p_{3}=(100 \mathrm{~mA})^{2} \times 50 \Omega=500 \mathrm{~mW}
$$

Current Divider

$$
\begin{gathered}
i_{2}=100 \mathrm{~mA} \frac{137 \Omega}{137 \Omega+50 \Omega} \quad p_{2}=i_{2}^{2} \times 50 \Omega=268 \mathrm{~mW} \\
i_{\text {next-stage }}=100 \mathrm{~mA} \frac{50 \Omega}{137 \Omega+50 \Omega}=27 \mathrm{~mA} \ldots \text { etc. }
\end{gathered}
$$

Node Analysis

- We've Learned a Bag of Tricks
- Simple Circuits
- Series and Parallel
- Dividers
- What if None of them Works? Is there Something that Always Works?
- Node Analysis (KCL and Ohm's Law)
- Mesh Analysis (KVL and Ohm's Law)

Solve This Circuit

$$
V_{s}=12 \mathrm{~V}, A=3, R_{1}=R_{2}=1 k \Omega, R_{3}=5 k \Omega, R_{4}=200 \Omega
$$

Approach to Solution

Matrix Equation with KCL at Each Node

$$
\begin{gathered}
\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)\binom{v_{A}}{v_{B}}=\binom{y_{1}}{y_{2}} \\
\mathcal{M} \mathbf{x}=\mathbf{y}
\end{gathered}
$$

Circuit Parameters \times Unknowns $=$ Knowns
Solution

$$
\mathrm{x}=\mathcal{M}^{-1} \mathrm{y}
$$

Do you remember how to find the inverse of a matrix?

Approach to Solution

Matrix Equation with KCL at Each Node

$$
\begin{gathered}
\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)\binom{v_{A}}{v_{B}}=\binom{y_{1}}{y_{2}} \\
\mathcal{M} \mathbf{x}=\mathbf{y}
\end{gathered}
$$

Circuit Parameters \times Unknowns $=$ Knowns
Solution

$$
\mathbf{x}=\mathcal{M}^{-1} \mathbf{y}
$$

Do you remember how to find the inverse of a matrix?

$$
\text { Use Matlab: } \quad \mathrm{x}=\operatorname{inv}(\mathrm{M}) * \mathrm{y}
$$

KCL at Node A

Inbound Currents at A :

$$
\begin{array}{cl}
\frac{v_{s}-v_{A}}{R_{1}}+\frac{v_{B}-v_{A}}{R_{2}}+A i_{1}=0 & A=3 \\
\frac{v_{s}-v_{A}}{R_{1}}+\frac{v_{B}-v_{A}}{R_{2}}+A \frac{v_{s}-v_{A}}{R_{1}}=0 & R_{1}=R_{2}=1 k \Omega \\
\frac{v_{s}}{R_{1}}-\frac{v_{A}}{R_{1}}+\frac{v_{B}}{R_{2}}-\frac{v_{A}}{R_{2}}+A \frac{v_{s}}{R_{1}}-A \frac{v_{A}}{R_{1}}=0 & R_{4}=200 \Omega \\
\text { Constants on the Right } & \\
-\frac{v_{A}}{R_{1}}-\frac{v_{A}}{R_{2}}-A \frac{v_{A}}{R_{1}}+\frac{v_{B}}{R_{2}}=-\frac{v_{s}}{R_{1}}-A \frac{v_{s}}{R_{1}} &
\end{array}
$$

KCL at Node B

Inbound Currents at B :

$$
\begin{aligned}
& \frac{v_{s}-v_{B}}{R_{3}}+\frac{v_{A}-v_{B}}{R_{2}}+\frac{0-v_{B}}{R_{4}}=0 \\
& \frac{v_{s}}{R_{3}}-\frac{v_{B}}{R_{3}}+\frac{v_{A}}{R_{2}}-\frac{v_{B}}{R_{2}}-\frac{v_{B}}{R_{4}}=0
\end{aligned}
$$

Constants on the Right

$$
\begin{gathered}
-\frac{v_{B}}{R_{3}}+\frac{v_{A}}{R_{2}}-\frac{v_{B}}{R_{2}}-\frac{v_{B}}{R_{4}}=-\frac{v_{s}}{R_{3}} \\
\frac{1}{R_{2}} v_{A}-\left[\frac{1}{R_{3}}-\frac{1}{R_{2}}-\frac{1}{R_{4}}\right] v_{B}=-\frac{v_{s}}{R_{3}}
\end{gathered}
$$

$$
\begin{aligned}
& V_{s}=12 \mathrm{~V} \\
& A=3 \\
& R_{1}=R_{2}=1 \mathrm{k} \Omega \\
& R_{3}=5 \mathrm{k} \Omega \\
& R_{4}=200 \Omega
\end{aligned}
$$

Solve

Inbound Currents at A :

$$
\left[-\frac{1+A}{R_{1}}-\frac{1}{R_{2}}\right] v_{A}+\frac{1}{R_{2}} v_{B}=-\frac{1+A}{R_{1}} v_{s}
$$

$$
V_{s}=12 \mathrm{~V}
$$

$$
A=3
$$

$$
R_{1}=R_{2}=1 k \Omega
$$

Inbound Currents at B :

$$
R_{3}=5 k \Omega
$$

$$
\frac{1}{R_{2}} v_{A}-\left[\frac{1}{R_{3}}+\frac{1}{R_{2}}+\frac{1}{R_{4}}\right] v_{B}=-\frac{v_{s}}{R_{3}}
$$

$$
R_{4}=200 \Omega
$$

Matrix Equation

$$
\begin{gathered}
\left(\begin{array}{cc}
{\left[-\frac{1+A}{R_{1}}-\frac{1}{R_{2}}\right]} & \frac{1}{R_{2}} \\
\frac{1}{R_{2}} & -\left[\frac{1}{R_{3}}+\frac{1}{R_{2}}+\frac{1}{R_{4}}\right]
\end{array}\right) \times \ldots \\
\ldots\binom{v_{A}}{v_{B}}=\binom{-\frac{1+A}{R 1} v_{s}}{-\frac{v_{s}}{R_{3}}}
\end{gathered}
$$

Result

$$
\left(\begin{array}{cc}
{\left[-\frac{1+A}{R_{1}}-\frac{1}{R_{2}}\right]} & \frac{1}{R_{2}} \\
\frac{1}{R_{2}} & -\left[\frac{1}{R_{3}}+\frac{1}{R_{2}}+\frac{1}{R_{4}}\right]
\end{array}\right)\binom{v_{A}}{v_{B}}=\binom{-\frac{1+A}{R 1} v_{s}}{-\frac{v_{s}}{R_{3}}}
$$

From Matlab

$$
\begin{gathered}
\left.\begin{array}{cc}
V_{s}=12 \mathrm{~V} & A=3 \\
R_{1}=R_{2}=1 k \Omega \\
0.0010 & -0.0062
\end{array}\right)\binom{v_{1}}{v_{B}}=\ldots \\
\left.R_{3}=5 k \Omega \quad \begin{array}{l}
-0.0480 \\
-0.0024
\end{array}\right) \\
\mathbf{y}=\mathcal{M} \mathbf{x} \quad \mathbf{x}=R_{4}=200 \Omega
\end{gathered}
$$

Check Units

