Electrical Engineering Week 3

Charles A. DiMarzio EECE–2210 Northeastern University

Aug 2020

Week 3 Agenda

- First Lab, Tuesday, Thursday, or Friday
- Resistors in Series
- Resistors in Parallel
- Equivalent Resistors
- Power in Resistor Combinations
- Voltage Dividers
- Current Dividers
- Node Analysis

Resistors in Series (1)

 $V = V_1 + V_2 + V_3 \qquad \text{KVL}$ $\frac{V}{i} = \frac{V_1}{i} + \frac{V_2}{i} + \frac{V_3}{i}$ $R = R_1 + R_2 + R_3$

Chuck DiMarzio, Northeastern University

Resistors in Series (2)

Resistors in Series: Examples

Two $1 k \Omega$ Resistors in Series

$$R = R_1 + R_2$$
$$R = 2R_1$$
$$R = 2k\Omega$$

One Large Resistor and One Much Smaller

$$R = R_1 + R_2$$

 $R \approx Max(R_n)$

For Example $R_2 = R_1/10$ $R = 0.91R_1$ (10% error)

Aug 2020

Chuck DiMarzio, Northeastern University

Resistors in Parallel (1)

 $i = i_1 + i_2 + i_3 \quad \text{KCL}$ $\frac{i}{V} = \frac{i_1}{V} + \frac{i_2}{V} + \frac{i_3}{V}$ $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

Chuck DiMarzio, Northeastern University

Resistors in Parallel (2)

Parallel–Resistor Equations

$$R = R_{1} \parallel R_{2}$$
$$\frac{1}{R} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$$
$$R = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}}}$$
$$R = \frac{R_{1}R_{2}}{R_{1} + R_{2}}$$

Conductances Add

$$G = G_1 + G_2$$

Chuck DiMarzio, Northeastern University

Resistors in Parallel: Example

Two $1k\Omega$ Resistors in Parallel

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
$$R = \frac{R_1}{2}$$

 $R = 500\Omega$

One Large Resistor and One Much Smaller

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
$$R \approx Min(R_n)$$

Aug 2020

Chuck DiMarzio, Northeastern University 12385..slides3r3–8

Example: Ladder Network

Infinite Network: Equivalent Resistor? $(R_1 = R_2 = R_3 = 50\Omega)$ Assume the Answer is RAdd One More Link

$$R = R_1 + (R_2 \parallel R) + R_3$$
$$R = R_1 + \frac{R_2 R}{R_2 + R} + R_3$$
$$R(R_2 + R) = R_1 (R_2 + R) + R_2 R + R_3 (R_2 + R)$$
$$R(R_2 + R - R_1 - R_2 - R_3) = R_1 R_2 + R_3 R_2$$

Aug 2020

Ladder Solution

Previous Page

$$R (R_{2} + R - R_{1} - R_{2} - R_{3}) = R_{1}R_{2} + R_{3}R_{2}$$
$$R^{2} - R (R_{1} + R_{3}) - R_{1}R_{2} + R_{3}R_{2} = 0$$

Possible Solutions

$$R = \frac{(R_1 + R_3) \pm \sqrt{(R_1 + R_3)^2 + 4R_2(R_1 + R_3)}}{2}$$

For All 50 Ω Resistors, $R = 137\Omega$ (Failed Solution, $R = -37\Omega$)

Power Issues

What Resistors to Use? R = 1000, All Resistors Equal

$R_{1:4} = ?$

What is the Power in Each Resistor as a Fraction of the Total?

$$\frac{P_n}{P_{total}} = ?$$

What if I leave out the vertical wire in the middle?

Aug 2020

Equivalent Resistance (1)

 $[R_1 + R_6] \parallel [R_2 + R_3 + (R_4 \parallel R_5)]$ $R_n = 50\Omega \qquad \text{All } n$ $R = [50 + 50] \parallel [50 + 50 + 25]$ $R = 55.6\Omega$

Aug 2020

Chuck DiMarzio, Northeastern University

Equivalent Resistance (2)

 $[R_1 \parallel (R_2 + R_3)] + [R_4 \parallel R_5 \parallel R_6]$ $R_n = 50\Omega \qquad \text{All } n$ $R = [50 \parallel (100)] + [50/3]$ $R = 50\Omega$

Aug 2020

Chuck DiMarzio, Northeastern University

Series and Parallel

Series

- Voltage Sources Add
- Current Sources Fail
- Resistors Add

Parallel

- Voltage Sources Fail
- Current Sources Add
- Resistors Add Inverses

Voltage Divider

$$v_1 = iR_1$$
 $v = iR = i(R_1 + R_2 + R_3)$
 $v_1 = v \frac{R_1}{R_1 + R_2 + R_3}$

Chuck DiMarzio, Northeastern University

Current Divider

A Tricky One (1)

Reduce Using Series & Parallel Combinations: $v_{1,2} = 12V$, $R_n = 100\Omega$

Chuck DiMarzio, Northeastern University

A Tricky One (2)

Reduce Using Series & Parallel Combinations: $v_{1,2} = 12V$, $R_n = 100\Omega$

Chuck DiMarzio, Northeastern University

A Tricky One (3)

$i_4 = 24 V / 150 \Omega = 160 m A$

Chuck DiMarzio, Northeastern University

A Tricky One (4)

Voltage Divider: $v_A = -12V + 24V \times 50/150 = -4V$; i_n are easy.

Chuck DiMarzio, Northeastern University

Solve the Circuit

Solve With $v_A = 12V$ $v_B = 0$

Remember $R_n = 50\Omega$ for All $n \rightarrow R = 50\Omega$ Solution (Current Divider)

$$i = \frac{12V}{50\Omega} = 240 \text{mA}$$
 $i_1 = 160 \text{mA}$ $i_2 = 80 \text{mA}$
 $i_{4,5,6} = 80 \text{mA}$ $v_{crossbar} = 80 \text{mA} \times 50\Omega = 4V$

Aug 2020

Volume Control

https://www.tubesandmore.com/sites/default/files/uc_products/ 2: http://hades.mech.northwestern.edu/images/3/3e/Sensor-potentiometer.png 3: https://www.bazaargadgets.com/image/cache/catalog/products/electronics/arduino/

Would this make a good light dimmer switch?

Aug 2020

Chuck DiMarzio, Northeastern University

Current Divider

What Happens if One Burns Out

Current Divider

No Big Deal; $R_{1,2} >> \sum R_w + R_s$ Otherwise Remaining Light Brightens

Power in Ladder

Use v = 13.7V: Remember For All 50 Ω Resistors, $R = 137\Omega$

$$i = \frac{v}{R} = 100$$
 mA $p_1 = p_3 = (100$ mA $)^2 \times 50\Omega = 500$ mW

Current Divider

$$i_2 = 100 \text{mA} \frac{137\Omega}{137\Omega + 50\Omega}$$
 $p_2 = i_2^2 \times 50\Omega = 268 \text{mW}$

$$i_{next-stage} = 100 \text{mA} \frac{50\Omega}{137\Omega + 50\Omega} = 27 \text{mA} \dots \text{etc.}$$

Aug 2020

Node Analysis

- We've Learned a Bag of Tricks
 - Simple Circuits
 - Series and Parallel
 - Dividers
- What if None of them Works? Is there Something that Always Works?
 - Node Analysis (KCL and Ohm's Law)
 - Mesh Analysis (KVL and Ohm's Law)

Aug 2020

Solve This Circuit

Approach to Solution

Matrix Equation with KCL at Each Node

$$\begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} v_A \\ v_B \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$
$$\mathcal{M}\mathbf{x} = \mathbf{y}$$

Circuit Parameters × Unknowns = Knowns

Solution

$$\mathbf{x} = \mathcal{M}^{-1}\mathbf{y}$$

Do you remember how to find the inverse of a matrix?

Approach to Solution

Matrix Equation with KCL at Each Node

$$\begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} v_A \\ v_B \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$
$$\mathcal{M}\mathbf{x} = \mathbf{y}$$

Circuit Parameters \times Unknowns = Knowns

Solution

$$\mathbf{x} = \mathcal{M}^{-1}\mathbf{y}$$

Do you remember how to find the inverse of a matrix?

Use Matlab: x = inv(M)*y

Aug 2020

Chuck DiMarzio, Northeastern University 12385..slides3r3–29

KCL at Node A

Inbound Currents at A:

$$\begin{aligned} \frac{v_s - v_A}{R_1} + \frac{v_B - v_A}{R_2} + Ai_1 &= 0\\ \frac{v_s - v_A}{R_1} + \frac{v_B - v_A}{R_2} + A\frac{v_s - v_A}{R_1} &= 0\\ \frac{v_s}{R_1} - \frac{v_A}{R_1} + \frac{v_B}{R_2} - \frac{v_A}{R_2} + A\frac{v_s}{R_1} - A\frac{v_A}{R_1} &= 0\\ \end{aligned}$$
Constants on the Right
$$-\frac{v_A}{R_1} - \frac{v_A}{R_2} - A\frac{v_A}{R_1} + \frac{v_B}{R_2} &= -\frac{v_s}{R_1} - A\frac{v_s}{R_1} \end{aligned}$$

$$\left[-\frac{1+A}{R_1} - \frac{1}{R_2}\right]v_A + \frac{1}{R_2}v_B = -\frac{1+A}{R_1}v_s$$

$$V_{s} = 12V$$

$$A = 3$$

$$R_{1} = R_{2} = 1k\Omega$$

$$R_{3} = 5k\Omega$$

$$R_{4} = 200\Omega$$

$$R_{4} = 200\Omega$$

KCL at Node B

Inbound Currents at B:

$$\frac{v_s - v_B}{R_3} + \frac{v_A - v_B}{R_2} + \frac{0 - v_B}{R_4} = 0$$
$$\frac{v_s}{R_3} - \frac{v_B}{R_3} + \frac{v_A}{R_2} - \frac{v_B}{R_2} - \frac{v_B}{R_4} = 0$$

Constants on the Right

$$-\frac{v_B}{R_3} + \frac{v_A}{R_2} - \frac{v_B}{R_2} - \frac{v_B}{R_4} = -\frac{v_s}{R_3}$$
$$\frac{1}{R_2}v_A - \left[\frac{1}{R_3} - \frac{1}{R_2} - \frac{1}{R_4}\right]v_B = -\frac{v_s}{R_3}$$

$$V_{s} = 12V$$

$$A = 3$$

$$R_{1} = R_{2} = 1k\Omega$$

$$R_{3} = 5k\Omega$$

$$R_{4} = 200\Omega$$

$$R_{4} = 200\Omega$$

Solve

Inbound Currents at A:

$$\left[-\frac{1+A}{R_1} - \frac{1}{R_2}\right]v_A + \frac{1}{R_2}v_B = -\frac{1+A}{R_1}v_s$$

Inbound Currents at B:

$$\frac{1}{R_2}v_A - \left[\frac{1}{R_3} + \frac{1}{R_2} + \frac{1}{R_4}\right]v_B = -\frac{v_s}{R_3}$$

Matrix Equation

$$\begin{pmatrix} \left[-\frac{1+A}{R_1} - \frac{1}{R_2}\right] & \frac{1}{R_2} \\ \frac{1}{R_2} & -\left[\frac{1}{R_3} + \frac{1}{R_2} + \frac{1}{R_4}\right] \end{pmatrix} \times \dots \\ \dots \begin{pmatrix} v_A \\ v_B \end{pmatrix} = \begin{pmatrix} -\frac{1+A}{R_1}v_s \\ -\frac{v_s}{R_3} \end{pmatrix}$$

$$V_{s} = 12V$$

$$A = 3$$

$$R_{1} = R_{2} = 1k\Omega$$

$$R_{3} = 5k\Omega$$

$$R_{4} = 200\Omega$$

$$R_{4} = 200\Omega$$

Result

$$\begin{pmatrix} \begin{bmatrix} -\frac{1+A}{R_1} - \frac{1}{R_2} \end{bmatrix} & \frac{1}{R_2} \\ \frac{1}{R_2} & -\begin{bmatrix} \frac{1}{R_3} + \frac{1}{R_2} + \frac{1}{R_4} \end{bmatrix} \end{pmatrix} \begin{pmatrix} v_A \\ v_B \end{pmatrix} = \begin{pmatrix} -\frac{1+A}{R_1} v_s \\ -\frac{v_s}{R_3} \end{pmatrix}$$

T Z

10)/

 \mathbf{O}

From Matlab

$$\begin{pmatrix} -0.0050 & 0.0010 \\ 0.0010 & -0.0062 \end{pmatrix} \begin{pmatrix} v_A \\ v_B \end{pmatrix} = \dots$$

$$\begin{cases} R_1 = R_2 = 1k\Omega \\ R_3 = 5k\Omega \qquad R_4 = 200\Omega \end{cases}$$

$$\begin{pmatrix} -0.0480 \\ -0.0024 \end{pmatrix}$$

$$y = \mathcal{M}x \qquad x = \mathcal{M}^{-1}y$$

$$x = \begin{pmatrix} v_A \\ v_B \end{pmatrix} = \begin{pmatrix} 10 \\ 2 \end{pmatrix}$$
 Volts

Check Units