Electrical Engineering Week 2

Charles A. DiMarzio EECE–2210 Northeastern University

Sep 2021

Week 2 Agenda

- Conductors
- Resistors
- Power in Resistors
- Insulators
- Sources (Voltage and Current, Independent and Dependent)
- Kirchoff's Current Law
- Kirchoff's Voltage Law
- AC Power (Zero-to-Peak, Peak-to-Peak, RMS)

Sep 2021

Conductors

- Typically Copper
- Low Resistivity
- Sufficient Diameter
- Usual Approximation: R = 0.
- Validity?

Resistance: Ohm's Law

Copper Wire

$$A = \pi \times (1 \text{mm}/2)^2$$
$$\ell = 1 \text{m}$$
$$\rho = 1.72 \times 10^{-8} \Omega m$$
$$R = \frac{\rho \ell}{A} = 0.02 \Omega$$

Is that a lot?

Wires = Conductors?

Copper Wire

$$A = \pi \times (1 \text{mm}/2)^2$$
$$\ell = 1 \text{m}$$
$$\rho = 1.72 \times 10^{-8} \Omega m$$
$$R = \frac{\rho \ell}{A} = 0.02 \Omega$$

Is that a lot?

$$P_{lights} = 200$$
 $V = 12$ $i = \frac{p}{v} = 16.7$ A $P_{wire} = i^2 R = 5.6$ $V_{wire} = 0.33$ V

Sep 2021

Chuck DiMarzio, Northeastern University 12425..slides2–6

The Resistor

Sep 2021

Chuck DiMarzio, Northeastern University

12425..slides2-7

Power Ratings Low to High from Left to Right

Dynamic Braking

http://ecee.colorado.edu/ mathys/ecen1400/labs/resistors.html Parameters

trainweb.org

- Resistance
- Tolerance
- Power Rating (Maximum)

Sep 2021

Chuck DiMarzio, Northeastern University

12425..slides2-8

Power in Resistors

- p = iv, Always
- v = iR
- $p = \frac{v^2}{R}$, for Resistors
- $p = i^2 R$, for Resistors
- Resistors always absorb power

Power Ratings

 $p = v^2/R$

A typical resistor we might use in the lab has a power rating of 1/4 Watt. Is this ok?

• 1 Volt on a 1kOhm Resistor?

• 12 Volts on a 100 Ohm Resistor?

Quartz-Halogen Lamp

- Tungsten Light
 - 3000 K
 - Glass Bulb
 - Failure: Evaporation and Condensation
- Quartz-Halogen
 - 3500 K
 - Halogen Catalyst
 Prevents Condensation
 - Large Diameter Tungsten Filament $(R \downarrow \text{ so } V \downarrow)$
 - Lower Voltage for
 - Low Power
 - Quartz Bulb

Glass Resistor

$$A = (1 \text{cm})^2 \quad \ell = 1 \text{mm} \quad \rho = 10^{12} \Omega m$$

How Long to Heat the Glass 1K at 1V?

Volume = 0.1cm × (1cm)² = 0.1cc

$$0.2 \frac{J}{gm \ K} \times 2 \frac{gm}{cc} \times \text{Volume} = 0.04 \text{Joules}$$

t =

Voltage Sources

Example Dependent Voltage Source

Current Sources

Models

All Models Are Approximations

- The Earth is Flat
- The Earth is a Sphere
- The Earth is Very Complicated
- Sources: Perfect Voltage or Current Sources
- Conductors: R = 0

What if a 5–amp source is connected to an infinite resistance?

Sep 2021

Contradictory Circuits

Need a Better Model

Source Resistance

Chuck DiMarzio, Northeastern University

Switching Voltage

Which is Better?

Chuck DiMarzio, Northeastern University

12425..slides2-19

Switching Current

Which is Better?

Kirchoff's Current Law

Conservation of Charge

Kirchoff's Voltage Law

Conservation of Energy

Use KCL and KVL

Draw the Circuit Using Symbols

Car Headlights Circuit

Sep 2021

Chuck DiMarzio, Northeastern University

12425..slides2-24

Sine Waves Again

p = iv, Voltage in Blue, Current in Green, Power in Red Power at Twice the Operating Frequency

Another Cup of Coffee: RMS Voltage (or Current)

$$p(t) = i(t)v(t)$$
 $p(t) = \frac{v^2(t)}{R}$

 $v(t) = v_0 \cos(2\pi ft) \qquad v_0 = 311 \text{Volts} \qquad f = 50 \text{Hz}$ $v^2(t) = [v_0 \cos(2\pi ft)]^2 \qquad \frac{v^2(t)}{R} = \frac{v_0^2 \left[\frac{1}{2} + \frac{1}{2}\cos(4\pi ft)\right]}{R}$ $\bar{P} = \frac{\overline{v_0^2}}{2R} = \frac{v_{RMS}^2}{R} = 970 \text{ Watts} \qquad t = 43 \text{ s}$ Comparable to the Previous Cup (1kW): See Next Slide RMS Voltage Defined:

$$v_{RMS} = \frac{v_0}{\sqrt{2}} = \frac{v_{pp}}{2\sqrt{2}}$$

This problem was based on power in Europe or South America. How would it be different in North America?

Sep 2021

The First Cup of Coffee

- Energy: Pt (Watts \times Sec = Joules)
- Heat a Cup of Water $T_0 = 20$ to $T_1 = 60$ (250m ℓ)
- Energy Required $4.18 J/K/m\ell$
- 1kW Heater

$Pt = 4.18 \text{J/K/m}\ell \times 250 \text{m}\ell \times \Delta T$

t = 42s

Sep 2021

Chuck DiMarzio, Northeastern University

12425..slides2-27

RMS Voltage

What Is the Peak-to-Peak Voltage, Zero-to-Peak, RMS

Frequency Question

In the lab, you will build a remote control using an infrared light source and detector.

Ambient light will affect the performance of your device because it will be detected by the receiver.

What will be the frequency of the ambient light ...

- Outdoors?
- Indoors in the US?
- Indoors in Chile?

Sep 2021

Diodes, Briefly

- Diodes are Pretty Good Conductors One Way
- Diodes are Pretty Good Insulators the Other Way
- Light Emitting Diodes Emit Light When they Conduct
- They are Nonlinear
- There are Several Piecewise–Linear Approximations
- The Details Can Get Messy

Sep 2021