Electrical Engineering Week 12

Charles A. DiMarzio
EECE-2210

Northeastern University

Nov 2021

Week 12 Agenda: Equivalent Circuits Again

- Thévenin Equivalent
- Norton Equivalent
- Power Transfer

Some AC Circuit

$$
\begin{gathered}
R_{1}=1 \mathrm{k} \Omega, R_{2}=3 \mathrm{k} \Omega, R_{3}=2 \mathrm{k} \Omega, C=10 \mathrm{nF}, L=80 \mathrm{mH} \\
f=10 \mathrm{kHz} V_{S}=5 \mathrm{~V}, I_{S}=10 \mathrm{~mA}
\end{gathered}
$$

Open-Circuit Voltage (1)

- Open Circuit

$R_{1}=1 \mathrm{k} \Omega, R_{2}=3 \mathrm{k} \Omega$,
$R_{3}=2 \mathrm{k} \Omega, C=10 \mathrm{nF}$,
$L=80 \mathrm{mH}$,
$f=10 \mathrm{kHz}$
$V_{S}=5 \mathrm{~V}, I_{S}=10 \mathrm{~mA}$

$$
Z_{\text {load }} \rightarrow \infty
$$

- No Current in L
- Inbound Current at One Node

$$
\begin{gathered}
\frac{V_{S}-V_{A}}{R_{1}}+I_{S}-\frac{V_{A}}{R_{2}+\frac{1}{j \omega C}}=0 \\
V_{A}\left(\frac{1}{R_{2}+\frac{1}{j \omega C}}+\frac{1}{R_{1}}\right)=\frac{V_{S}}{R_{1}}+I_{S}
\end{gathered}
$$

- Result

$$
V_{A}=11.7625+1.2881 j
$$

- Check Inbound Current

$$
\approx-2 \times 10^{-18}+2 \times 10^{-18} j
$$

Open-Circuit Voltage (2)

$R_{1}=1 \mathrm{k} \Omega, R_{2}=3 \mathrm{k} \Omega$,
$R_{3}=2 \mathrm{k} \Omega, C=10 \mathrm{nF}$,
$L=80 \mathrm{mH}$,
$f=10 \mathrm{kHz}$
$V_{S}=5 \mathrm{~V}, I_{S}=10 \mathrm{~mA}$

- Open Circuit

$$
Z_{l o a d} \rightarrow \infty
$$

- Previous Page

$$
V_{A}=11.7625+1.2881 j
$$

$$
\begin{gathered}
11.83 \mathrm{~V} \angle-6.25^{\circ} \\
V_{O C}=V_{A}+I_{s} R_{3}=31.8-1.29 j \\
=31.8 \mathrm{~V} \angle-2.3^{\circ}
\end{gathered}
$$

Short-Circuit Current

$R_{1}=1 \mathrm{k} \Omega, R_{2}=3 \mathrm{k} \Omega$,
$R_{3}=2 \mathrm{k} \Omega, C=10 \mathrm{nF}$,
$L=80 \mathrm{mH}$,
$f=10 \mathrm{kHz}$
$V_{S}=5 \mathrm{~V}, I_{S}=10 \mathrm{~mA}$

- Short Circuit

$$
Z_{\text {load }}=0
$$

- Two Nodes (Oh No!)
- Try Superposition

Short the Voltage Source

- Short Circuit

$$
V_{S}=0
$$

- Current Source Sees Z_{1}

$$
Z_{1}=L \|\left\{R_{3}+\left[R_{1} \|\left(R_{2}+Z_{C}\right)\right]\right\}
$$

- Voltage

$$
V_{B}=I_{S} Z_{1}
$$

$R_{1}=1 \mathrm{k} \Omega, R_{2}=3 \mathrm{k} \Omega$,
$R_{3}=2 \mathrm{k} \Omega, C=10 \mathrm{nF}$,
$L=80 \mathrm{mH}$,
$f=10 \mathrm{kHz}$
$V_{S}=5 \mathrm{~V}, I_{S}=10 \mathrm{~mA}$

$$
I_{1 s c}=2.3 \mathrm{~mA}-4.4 j \mathrm{~mA}
$$

Open the Current Source

$R_{1}=1 \mathrm{k} \Omega, R_{2}=3 \mathrm{k} \Omega$,
$R_{3}=2 \mathrm{k} \Omega, C=10 \mathrm{nF}$,
$L=80 \mathrm{mH}$,
$f=10 \mathrm{kHz}$
$V_{S}=5 \mathrm{~V}, I_{S}=10 \mathrm{~mA}$

- Open Circuit

$$
I_{S}=0
$$

- Voltage Source Sees Z_{2}

$$
\begin{gathered}
Z_{2}=R_{1}+\left(Z_{C}+R_{2}\right) \|\left(R_{3}+Z_{L}\right) \\
I_{R 1}=\frac{V_{S}}{Z_{2}}
\end{gathered}
$$

- Current Contribution (Divider)

$$
\begin{gathered}
I_{2 s c}=I_{R 1} \frac{Z_{C}+R_{2}}{\left(Z_{C}+R_{2}\right)\left(R_{3}+Z_{L}\right)} \\
I_{2 s c}=270 \mu \mathrm{~A}+640 j \mu \mathrm{~A}
\end{gathered}
$$

Superposition Result for $I_{s c}$

$R_{1}=1 \mathrm{k} \Omega, R_{2}=3 \mathrm{k} \Omega$,
$R_{3}=2 \mathrm{k} \Omega, C=10 \mathrm{nF}$,
$L=80 \mathrm{mH}$,
$f=10 \mathrm{kHz}$
$V_{S}=5 \mathrm{~V}, I_{S}=10 \mathrm{~mA}$

- Current Source Alone

$$
I_{1 s c}=2.3 \mathrm{~mA}-4.4 j \mathrm{~mA}
$$

- Voltage Source Alone

$$
I_{2 s c}=270 \mu \mathrm{~A}+640 j \mu \mathrm{~A}
$$

- Superposition

$$
\begin{gathered}
I_{s c}=I_{1 s c}+I_{2 s c} \\
I_{s c}=2.6 \mathrm{~mA}-5.0 j \mathrm{~mA} \\
I_{s c}=5.6 \mathrm{~mA} \angle-63^{\circ}
\end{gathered}
$$

Impedance

$R_{1}=1 \mathrm{k} \Omega, R_{2}=3 \mathrm{k} \Omega$,
$R_{3}=2 \mathrm{k} \Omega, C=10 \mathrm{nF}$,
$L=80 \mathrm{mH}$,
$f=10 \mathrm{kHz}$
$V_{S}=5 \mathrm{~V}, I_{S}=10 \mathrm{~mA}$

- $V_{S}=0$ (Short)
- $I_{S}=0$ (Open)
- Load Sees $Z_{T}=Z_{N}$

$$
\begin{gathered}
Z_{T}=Z_{L}+R_{3}+\left[R_{1} \|\left(Z_{C}+R_{2}\right)\right] \\
Z_{T}=2.8 \mathrm{k} \Omega+4.9 j \mathrm{k} \Omega \\
=5.7 \mathrm{k} \Omega \angle-61^{\circ}
\end{gathered}
$$

- Trust but Verify
>> check=ISC*Z_T-VOC check $=$
$-7.1054 e-15+1.3323 e-15 i$

Thévenin Equivalent

$R_{1}=1 \mathrm{k} \Omega, R_{2}=3 \mathrm{k} \Omega$,
$R_{3}=2 \mathrm{k} \Omega, C=10 \mathrm{nF}$,
$L=80 \mathrm{mH}$,
$f=10 \mathrm{kHz}$

$$
Z_{T}=5.7 \mathrm{k} \Omega \angle-61^{\circ}
$$

$V_{S}=5 \mathrm{~V}, I_{S}=10 \mathrm{~mA}$

Norton Equivalent

$R_{1}=1 \mathrm{k} \Omega, R_{2}=3 \mathrm{k} \Omega$,
$R_{3}=2 \mathrm{k} \Omega, C=10 \mathrm{nF}$,
$L=80 \mathrm{mH}$,
$f=10 \mathrm{kHz}$
$V_{S}=5 \mathrm{~V}, I_{S}=10 \mathrm{~mA}$

$I_{N}=I_{s c}=5.6 \mathrm{~mA} \angle-63^{\circ}$
$Z_{N}=Z_{T}=5.7 \mathrm{k} \Omega \angle-61^{\circ}$

Happy Thanksgiving

