EECE 2210 - Electrical Engineering Quiz 9

Prof. Charles A. DiMarzio

8 November 2021

Student Name:

The figure shows the de-bounce circuit for a switch as we discussed in class. In this case, $V_s = 5$ Volts, $R_1 = 20$ kOhms, $R_2 = 40$ kOhms, and $C = 1 \,\mu$ F. The switch is a normally-open pushbutton that "bounces" when it is pressed and/or released. The plot in the upper left shows when the switch is opened and closed. The indicated times are $t_1 = 1$ ms and $t_2 = 4$ ms.

1. What is the time constant for charging the capacitor when the switch is open?

2. What is the time constant for discharging the capacitor when the switch is closed?

3. Up until time t_1 the switch has been changing in some unknown way, but just before t_1 , the voltage on the capacitor is $v(t_1^-) = 4.5$ Volts. What is the voltage on the capacitor at time t_2 ?

^{4.} Now suppose instead that the voltage at t_1 is $v(t_1^-) = 5$ Volts, the maximum possible. I press the button from from t_1 to t_2 , without bouncing, and I want the voltage on the capacitor to fall to 1 Volt. The time t_2 is not sufficient. What must t_2 be for this to work?

- 1. $\tau_{charge} = (R_1 + R_2) C = 60 \,\mathrm{ms}.$
- 2. $\tau_{discharge} = R_2 C = 40 \,\mathrm{ms}.$
- 3. $V(t_2) = V(t_1) e^{-(t_2 t_1)\tau_{discharge}} = 4.17$ Volts
- 4. $t_2 = -\log_e \left(\frac{1}{5}\tau_{discharge}\right) + t_1 = 65 \,\mathrm{ms}$