EECE 2210 - Electrical Engineering Quiz 6

Prof. Charles A. DiMarzio

25 October 2021

Student Name: _

The circuit shown is an inverting amplifier, with $R_1 = 1 \,\mathrm{k}\Omega$, $R_2 = 15 \,\mathrm{k}\Omega$, $R_3 = 2 \,\mathrm{k}\Omega$. In this case, the positive power supply for the amplifier is $V_{CC} = 1.5 \,\mathrm{V}$, and the negative supply is grounded, so that $V_{EE} = 0$. We connect an ideal voltage source, $V_{in} = V_{DC} + v_{AC} \cos \omega t$ the input.

1. What is the voltage gain of the amplifier?

 $A_v =$ _____

2. What will be the two possible output voltages that will result when the amplifier is saturated?

 $V_o =$ _____ and _____ V.

3. If $V_{DC} = 0$ what is the maximum of V_{AC} that can be input such that the output will still be a sine wave? By this I mean that the output will not be saturated or "clipped."

 $V_{ACmax} =$ _____ V.

3. What value of V_{DC} will allow the largest V_{AC} such that the output will still be a sinusoid?

 $V_{DC} =$ _____ V.

4. What is the largest value of V_{AC} in part 3?

 $V_{ACmax} =$ _____ V.

1. What is the voltage gain of the amplifier?

 $A_v = -\frac{15\,\mathrm{kOhms}}{1\,\mathrm{kOhm}} = -15$

2. What will be the two possible output voltages that will result when the amplifier is saturated?

 $V_o = 0$ and $1.5 \,\mathrm{V}$.

3. If $V_{DC} = 0$ what is the maximum of V_{AC} that can be input such that the output will still be a sine wave? By this I mean that the output will not be saturated or "clipped."

 $V_{ACmax} = 0$ V. The amplifier will always saturate on any positive input.

3. What value of V_{DC} will allow the largest V_{AC} such that the output will still be a sinusoid?

Put the DC output in the middle of its range $V_o = 1.5 \text{ V}/2$. $V_{DC} = 1.5 \text{ V} \frac{1}{A_V} = -100 \text{ mV}.$

4. What is the largest value of V_{AC} in part 3?

 $V_{ACmax} = 100 \,\mathrm{mV}.$