EECE 2150 - Electrical Engineering Fall 2021 Quiz 4

Prof. Charles A. DiMarzio

 $4 \ {\rm October} \ 2021$

Student Name: _____

Find the Thévenin equivalent circuit for this circuit, which I wish to connect to a load resistor, R_L as shown. $V_s = 12 \text{ V}$, $i_s = 6 \text{ mA}$, $R_1 = 10 \text{ Ohms}$, $R_2 = 3 \text{ Ohms}$, $R_3 = 10 \text{ Ohms}$, and $R_4 = 3 \text{ Ohms}$.

1. What is the Thévenin voltage? Hint: Use superposition.

 $V_T =$ _____ Volts

2. What is the Thévenin resistance?

 $R_T =$ _____ Ohms

3. What voltage would appear across the load if it is $R_L = 1 \text{ kOhms}$?

 $V_L =$ _____ Volts

4. In that case, what would be the power in the load?

P =_____ Watts

1. What is the Thévenin voltage?

Voltage source only:

$$\begin{split} V_T &= V_s \frac{R_2 + R_3}{R_1 + R_2 + R_3} = 6.78 \text{ Volts} \\ \text{Current source only} \\ v_B &= i_s \left[R_3 \parallel (R_1 + R_2) \right], \, V_T = v_B \frac{R_1}{R_1 + R_2} = 0.28 \text{ Volts} \\ \text{Total: } V_T &= 6.81 \text{ Volts} \end{split}$$

2. What is the Thévenin resistance? Zero the sources and $R_T = R_4 + [R_1 \parallel (R_2 + R_3)] = 8.65$ Ohms

3. What voltage would appear across the load if it is $R_L = 1$ kOhms? $V_L = V_T \frac{R_L}{R_T + R_L} = 6.75$ Volts

4. In that case, what would be the power in the load? $P = V_L^2/R_L = 0.046$ Watts or 46 mW.