EECE 2150 - Electrical Engineering Fall 2021 Quiz 3

Prof. Charles A. DiMarzio

27 September 2021

Student Name:
Consider the circuit in the figure. The resistors are $R_{1}=10 \mathrm{Ohms}$ and $R_{2}=$ 3 Ohms. The box around V_{s} and R_{s} is meant to show that these two components are integral parts of the source and cannot be separated. We have the use of an ideal voltmeter.

Initially the switches are both open and we measure the voltage at point V as $V=12$ Volts. When we close the switch to connect R_{1} to the circuit, the measured voltage drops to $V=10$ Volts.

1. What is the voltage of the source, V_{s}

$$
V_{s}=
$$

\qquad Volts
2. What is the source resistance?
$R_{s}=$ \qquad Ohms
3. How much current is going through R_{1} in this case?
$i_{1}=$ Amperes
4. Now we also close the switch to connect R_{2} in addition to the already connected R_{1}. What is the combined resistance of the "load" which now consists of both R_{1} and R_{2} ?

$$
R_{\text {load }}=\square \text { Ohms }
$$

5. What voltage, V will we measure in this case?
$V=$ \qquad Volts

6. What is the voltage of the source, V_{s}

This is an open circuit so

$$
V_{s}=V=12 \text { Volts }
$$

2. What is the source resistance?

Voltage Divider:

$$
V=V_{s} \frac{R_{1}}{R_{1}+R_{s}} \quad R_{s}=\frac{V_{s} R_{1}}{V}-R_{1}=2 \mathrm{Ohms}
$$

3. How much current is going through R_{1} in this case?

Ohm's Law:

$$
i=V / R_{1}=\frac{10 \text { Volts }}{10 \text { Ohms }}=1 \text { Ampere }
$$

4. Now we also close the switch to connect R_{2} in addition to the already connected R_{1}. What is the combined resistance of the "load" which now consists of both R_{1} and R_{2} ?

Parallel Resistors:

$$
R_{\text {load }}=R_{1} \| R_{2}=2.31 \mathrm{Ohms}
$$

5. What voltage, V will we measure in this case?

Voltage Divider:

$$
V=12 \text { Volts } \times \frac{\left(R_{1} \| R_{2}\right)}{\left(R_{1} \| R_{2}\right)+R_{s}}=6.43 \text { Volts. }
$$

