EECE 2150 - Electrical Engineering Fall 2021 Quiz 3

Prof. Charles A. DiMarzio

27 September 2021

Student Name:	
Consider the circuit in the figure. The resistors 3 Ohms . The box around V_s and R_s is meant to show integral parts of the source and cannot be separate voltmeter.	that these two components are
Initially the switches are both open and we mea $V=12\mathrm{Volts}$. When we close the switch to connect voltage drops to $V=10\mathrm{Volts}$.	~ -
1. What is the voltage of the source, V_s	
$V_s =$	Volts
$R_s =$	
$i_1 = \underline{\hspace{1cm}}$ 4. Now we also close the switch to connect R_2 in a R_1 . What is the combined resistance of the "load" and R_2 ?	ddition to the already connected
$R_{load} =$	Ohms
V =	Volts

1. What is the voltage of the source, V_s This is an open circuit so

$$V_s = V = 12 \text{ Volts.}$$

2. What is the source resistance?

Voltage Divider:

$$V = V_s \frac{R_1}{R_1 + R_s}$$
 $R_s = \frac{V_s R_1}{V} - R_1 = 2 \text{ Ohms.}$

3. How much current is going through R_1 in this case?

Ohm's Law:

$$i = V/R_1 = \frac{10 \text{ Volts}}{10 \text{ Ohms}} = 1 \text{ Ampere.}$$

4. Now we also close the switch to connect R_2 in addition to the already connected R_1 . What is the combined resistance of the "load" which now consists of both R_1 and R_2 ?

Parallel Resistors:

$$R_{load} = R_1 \parallel R_2 = 2.31 \text{ Ohms.}$$

5. What voltage, V will we measure in this case?

Voltage Divider:

$$V = 12 \text{ Volts} \times \frac{(R_1 \parallel R_2)}{(R_1 \parallel R_2) + R_s} = 6.43 \text{ Volts}.$$