EECE 2210 - Electrical Engineering Quiz 11

Prof. Charles A. DiMarzio

22 November 2021

Student Name:
The figure shows an amplifier circuit with a feedback impedance that is a combination of a resistor and capacitor. In this circuit, $R_{1}=2 \mathrm{k} \Omega, R_{2}=20 \mathrm{k} \Omega, C=100 \mathrm{pF}$. The op-amp is assumed to be an ideal one.

1. If $V_{i n}$ is some DC voltage, what is the gain of the amplifier?

Gain $=$ \qquad
2. If $V_{i n}$ is a very high-frequency AC voltage, what is the gain? Is this a low-pass or high-pass amplifier?

Gain $=\ldots$ Low-Pass \square High-Pass
3. Write an equation for the gain as a function of frequency.
$A_{V}(f)=$ \qquad .
4. At what frequency is the gain equal to the maximum (from part 1) divided by $\sqrt{2}$. In other words, what is the cutoff frequency?

Cutoff Frequency $=$ \qquad .
5. By what angle is the output voltage different from the input at the cutoff freqency?

Phase $=$ \qquad

1. If $V_{i n}$ is some DC voltage, what is the gain of the amplifier?

Gain $=-R_{2} / R_{1}=-10$
2. If $V_{i n}$ is a very high-frequency AC voltage, what is the gain? Is this a low-pass or high-pass amplifier?

Gain $=-Z_{2} / R_{1}=0 / R_{1}=0 \quad$ X Low-Pass $\quad \square$ High-Pass
3. Write an equation for the gain as a function of frequency.

$$
A_{V}(f)=\frac{-\left(R_{2} \| \frac{1}{j 2 \pi f C}\right)}{R_{1}}
$$

4. At what frequency is the gain equal to the maximum (from part 1) divided by $\sqrt{2}$. In other words, what is the cutoff frequency? $R_{2}=\left|\frac{1}{j C 2 \pi f}\right|$ $=\frac{1}{2 \pi R_{2} C}$

Cutoff Frequency $=79.6 \mathrm{~Hz}$.
5. By what angle is the output voltage different from the input at the cutoff freqency?

$$
A_{V}(f)=\frac{-\left(R_{2} \| \frac{1}{j 2 \pi f C}\right)}{R_{1}}=\frac{-\left(R_{2} \|-j R_{2}\right)}{R_{1}}
$$

Phase $=-45$ Degrees

