Circuits and Signals: Biomedical Applications Week 7

Charles A. DiMarzio
EECE-2150
Northeastern University

Oct 2023

Week 7 Agenda:

- Time-Varying Systems
- Capacitors
- Inductors
- Differential Equations
- Steady State and Transient Solutions

Big Picture

Devices

Resistors	Capacitors	Inductors
$v=i R$	$v=\frac{1}{C} \int i d t$	$i=\frac{1}{L} \int v d t$
	$i=C \frac{d v}{d t}$	$v=L \frac{d i}{d t}$
R in Ohms	C in Farads	L in Henries
	Voltage Continuous	Current Continuous
	Open to DC	Short to DC

Circuits

RC or RL	LC	RLC
First Order DE	Second Order DE	2nd with Loss
Negative Exponentials	Sinusoids	Lossy Sinusoids

We can do interesting things with time-varying sources.

Differential Equations

$$
\begin{array}{|l|l|l|l}
\hline i=C \frac{d v}{d t} & v=i R & v=L \frac{d i}{d t} & \mathrm{KCL}, \mathrm{KVL}, \text { etc. } \\
\hline
\end{array}
$$

- Differential Equation

$$
a \frac{d^{2} z}{d t^{2}}+b \frac{d z}{d t}+c z+d=0
$$

- Steady State

$$
c z+d=0=\text { constant }
$$

- Transient: (Mostly Switches) Solve DE \& BC
- Steady-State Sinusoids: $\frac{d|z| e^{j \omega t}}{d t}=j \omega|z| e^{j \omega t}$

$$
-a \omega^{2} z+j b \omega z+c z+d=0
$$

Agenda: Capacitors

- Physical Concepts
- Symbols
- $i-v$ Behavior
- Fabrication
- Power and Energy
- Parallel and Series Combinations
- Steady-State Solutions
- Charge and Discharge

Capacitors (1)

Capacitors (2)

Electrolytics

Big Capacitors

Principal Specifications: Capacitance (Farads), Maximum Voltage

Symbols

Equations

- Charge and Voltage: $q=C v$
- Charge and Current: $i=\frac{d q}{d t}$
- Current and Voltage:
$i=C \frac{d v}{d t}$
- Voltage and Charge: $v=\frac{q}{C}$
- Current and Charge:

$$
q(t)=\int i(t) d t
$$

- Voltage and Current:

$$
v(t)=\int \frac{i}{C} d t
$$

- Electrons:
$n=\frac{C v}{e}$

$$
\frac{d v}{d t} \rightarrow \infty: \quad i \rightarrow \infty
$$

$$
\frac{d v}{d t} \rightarrow 0: \quad i \rightarrow 0
$$

Voltage Source

$$
i(t)=C \frac{d v(t)}{d t}
$$

Example

What Will Happen?

$$
i(t)=C \frac{d v(t)}{d t}
$$

What Will Happen?

(1) Close S1
(2) Open S1
(3) Close S2

Current Source

Fabrication

$$
C=\frac{\epsilon A}{d} \quad \epsilon \text { is the Dielectric Constant }
$$

Equations

$$
\begin{gathered}
C=\frac{\epsilon A}{d} \\
\epsilon=\epsilon_{r} \epsilon_{0} \\
\epsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}
\end{gathered}
$$

Useful Term: Relative dielectric constant, ϵ_{r} $\epsilon_{r}=1$ for vacuum. Pretty close for air.

Example

High Voltage
Small d
Dry Air at Sea Level:
$\approx 30 \mathrm{kV} / \mathrm{cm} *$
Glass: $\approx 100 \mathrm{kV} / \mathrm{cm}$

$$
\begin{gathered}
C=\frac{\epsilon A}{d}=10 \mu \mathrm{f} \\
\epsilon=3.9 \epsilon_{0} \quad \mathrm{SiO}_{2} \\
\frac{A}{d}=3 \times 10^{5} \mathrm{~m} \\
d=10 \mu \mathrm{~m} \quad A=3 \mathrm{~m}
\end{gathered}
$$

Interleave, Roll, or otherwise work to get more A Use high ϵ_{r} Use high Breakdown Voltage

Power and Energy

Power

$$
p(t)=v(t) i(t) \quad p(t)=v(t) C \frac{d v(t)}{d t}
$$

Energy

$$
w=\int p(t) d t=\frac{v^{2} C}{2}
$$

Example

$$
w=\frac{(100 \mathrm{~V})^{2} 100 \mu \mathrm{~F}}{2}=500 \mathrm{~mJ}
$$

Parallel Combinations

$$
i_{n}=C_{n} \frac{d v_{n}}{d t} \quad i=\sum i_{n} \quad C=\sum C_{n}
$$

Series Combinations

Parallel/Series Summary

	Series	Parallel
Voltage Sources	$v=\sum v_{n}$	Contradictory
Current Sources	Contradictory	$i=\sum i_{n}$
Resistors	$R=\sum R_{n}$	$\frac{1}{R}=\sum \frac{1}{R_{n}}$
Capacitors	$\frac{1}{C}=\sum \frac{1}{C_{n}}$	$C=\sum C_{n}$

Example Problem

$$
C_{1: 6}=1 \mu \mathrm{~F} \quad C_{A B}=?
$$

Steady State

- DC Sources, Resistors, Capacitors (and later Inductors)
- $t \rightarrow \infty$ with No Non-DC Sources
- $\frac{d(\text { anything })}{d t} \rightarrow 0$
- Specifically $\frac{d v_{\text {capacitor }}}{d t} \rightarrow 0$
- Therefore $i_{\text {capacitor }}=0$
- Treat Capacitors as Open and Solve

Steady-State Example

$$
\begin{aligned}
& \text { Turn on } V_{s} \text { at } t=0 \text {, Wait a Long Time, } \\
& v_{A}=? \quad v_{B}=? \quad v_{C}=? \quad i_{L}=?
\end{aligned}
$$

Real Capacitors

R_{s}, L Low. R_{p} High.

Don't Try this at Home, Kids!

High-Voltage Capacitor:

$$
v=10 \mathrm{kV} \quad C=10,000 \mu \mathrm{~F} \quad R_{p}=10 \mathrm{G} \Omega
$$

Discharge Time at Constant Current:

$$
\begin{gathered}
q=C v=10 \text { Coulombs } \\
i(0)=\frac{v}{R_{P}}=1 \mu \mathrm{~A} \\
t=\frac{q}{i}=10^{7} \mathrm{sec}=116 \text { Days }
\end{gathered}
$$

Exponential decay will be slower...
Unless you put a low resistor across it.
Then very bad things can happen.

"Shorting Bar"

Agenda: Inductors

- Physical Concepts
- Symbols
- $i-v$ Behavior
- Fabrication
- Power and Energy
- Parallel and Series Combinations
- Steady-State Solutions
- "Instantaneous" Current Change

The Inductor

- Coil of Wire
- Air or Ferromagnetic Core
- Current \rightarrow Magnetic Field (Electromagnet)
- Changing Field \rightarrow Voltage (Faraday's Law)
- Voltage Opposes Change in Current

$$
v(t)=L \frac{d i(t)}{d t}
$$

timetoast.com
www.electrical4u.net
12492..slides7-28

Symbol

Voltage Source

$$
i(t)=\int v(t) d t
$$

Current Source

$$
v(t)=L \frac{d i(t)}{d t}
$$

$i-v$ Behavior

$$
v(t)=L \frac{d i(t)}{d t}
$$

Step Current

Voltage is Finite so Current is Continuous

Values

$$
v=L \frac{d i}{d t}
$$

Typical Values:

$$
\begin{gathered}
\text { Volts }=L \frac{\mathrm{~mA}}{\mathrm{~ms}} \\
L \text { in } \frac{\mathrm{Vs}}{\mathrm{~A}}=\text { Henries }=\mathrm{H}
\end{gathered}
$$

$\mathrm{mH}, \mu \mathrm{H}$ Common in RF.
kH Do Exist.

Fabrication

- Coil of Wire (Many Turns)
- Field of a solenoid

$$
B(t)=\frac{\mu N}{\ell} i(t)
$$

- Inductance of a solenoid

$$
v(t)=\frac{\mu A N^{2}}{\ell} \frac{d i(t)}{d t} \quad L=\frac{\mu A N^{2}}{\ell}
$$

- Air, Iron, Ferrite Core (Increased Field)
- Solenoid, Toroid, Helmholz Coils etc.
- Many Options
$\mu=\mu_{r} \times 1.26 \times 10^{-6} \mathrm{H} / \mathrm{m}$

Inductors

indiamart.com

More Inductors \& Transformers

kintronic.com

polytechnichub.com

globalspec.com

coloradocountrylife.coop
electricianinperth.com.au

Helmholz Coils

3bscientific.com

magnetic-instrument.com

Real Inductors

R_{s}, C_{p} Small. R_{p} Large

Power and Energy

$$
\begin{gathered}
v(t)=L \frac{d i(t)}{d t} \\
p(t)=i(t) v(t)=i(t) L \frac{d i(t)}{d t} \\
w=\int p(t) d t=\frac{i^{2} L}{2}
\end{gathered}
$$

Example: Still Another Cup of Coffee

$$
\begin{array}{cl}
w=42 \mathrm{~kJ} & i^{2} L=84 \mathrm{~kJ} \\
L=6 \mathrm{H} & i=118 \mathrm{~A}
\end{array}
$$

Note: At DC $v \approx 0$, so $p \approx 0$, except during turn-on and turn-off. These times can be exciting!

MRI Magnet Quench

fickr.com Superconducting magnet in use, Low T, R_{s}, v, High i. In quench, $-d i / d t \uparrow, T \uparrow, R_{s} \uparrow$, High v, i, p.

Inductors in Series

Just Like Resistors

Parallel Inductors

$$
\frac{1}{L_{n}} \frac{d i_{n}}{d t}=v \quad \frac{d i}{d t}=\sum \frac{d i_{n}}{d t} \quad \frac{L}{=} \sum \frac{1}{L_{n}}
$$

Just Like Resistors Again

Parallel/Series Summary

	Series	Parallel
Voltage Sources	$v=\sum v_{n}$	Contradictory
Current Sources	Contradictory	$i=\sum i_{n}$
Resistors	$R=\sum R_{n}$	$\frac{1}{R}=\sum \frac{1}{R_{n}}$
Inductors	$L=\sum L_{n}$	$\frac{1}{L}=\sum \frac{1}{L_{n}}$
Capacitors	$\frac{1}{C}=\sum \frac{1}{C_{n}}$	$C=\sum C_{n}$

Parallel/Series Example (1)

$$
L_{A B}=L_{1}+\left\{L_{4} \|\left[L_{2}+L_{3}+\left(L_{8} \| L_{9}\right)+L_{7}\right]+\left[L_{5} \| L_{6}\right]\right\}
$$

Parallel/Series Example (2)

$$
\begin{gathered}
L_{1: 9}=1 \mathrm{mH} \\
L_{23897}=1+1+\frac{1}{2}+1=3.5 \mathrm{mH} \\
L_{423897}=1 \| 3.5=778 \mu \mathrm{H} \\
L_{A B}=1+0.778+\frac{1}{2}=2.28 \mathrm{mH}
\end{gathered}
$$

Mutual Inductance

- Two or More Coils
- Same Core

$$
\begin{aligned}
& v_{1}(t)=L_{1} \frac{d i_{1}(t)}{d t}+M \frac{d i_{2}(t)}{d t} \\
& v_{2}(t)=L_{2} \frac{d i_{2}(t)}{d t}+M \frac{d i_{1}(t)}{d t}
\end{aligned}
$$

- M Same Units as L
- Transformers
- AC Only
- Higher Frequency \rightarrow Smaller

Inductors at DC (Steady State)

C_{p} Open, L Short, R_{p} Large (ignore). All that's left is R_{s} (just the resistance of the wire). $v=i R_{s} \rightarrow 0$

Steady State

Steady State (Short L, Open C): $v_{o}=-v_{i n} R_{2} / R_{1}$ and $R_{o u t}=0$

What Happens?

S_{1}, S_{2} Closed. Open S_{1}, Wait, Open S_{2}

Jacob’s Ladder

https://www.youtube.com/watch?v=PXiOQCRiSpo

Agenda:

First-Order Circuits

- RC Circuits
- Boundary Conditions
- Steady State Solutions
- Charge and Discharge a Capacitor
- RL Circuits
- Some Examples

Time-Varying Sources

- Transient Analysis (Now)
- Differential Equations
- First Order for RL, RC
- Second Order for RLC
- Circuits Usually Involve Switches
- Transient and Steady-State Solutions
- Sinusoidal Solution (Later)
- Phasor Analysis ($\frac{d}{d t}=j 2 \pi f$)
- Complex Impedance
- "Easy" Solutions
- Fourier Series and Transforms

Transient Solution Approach

- Write the Differential Equation (KCL, KVL, Component Eqns.)
- Postulate a Solution: Exponential, Sinusoid, Constant
- Solve for Some Unknowns
- Solve Steady-State Problem for Final Condition
- Use Continuity for Initial Condition

RC Circuit

Start with $v_{A} \neq 0$ (eg. use a switch)

$$
i=C \frac{d v}{d t} \quad i=-C \frac{d v_{A}}{d t} \quad v_{A}=i R
$$

RC Equations

- Differential Equation

$$
v_{A}=-R C \frac{d v_{A}}{d t}
$$

- Test Solution

$$
v_{A}=k_{1} e^{s t}+k_{2}
$$

- Substitute

$$
k_{1} e^{s t}+k_{2}=-R C \frac{d}{d t}\left(k_{1} e^{s t}+k_{2}\right)
$$

- Take the Derivative

$$
k_{1} e^{s t}+k_{2}=-R C s k_{1} e^{s t}
$$

- Group

$$
k_{1}(1+R C s) e^{s t}-k_{2}=0
$$

RC Solution

$$
\begin{gathered}
i=-C \frac{d v_{A}}{d t} \\
i=\frac{v}{R} \\
v_{A}=k_{1} e^{s t}+k_{2}
\end{gathered}
$$

- From Previous Page

$$
k_{1}(1+R C s) e^{s t}-k_{2}=0
$$

- True for All Time (Above is zero term-by-term

$$
k_{2}=0 \quad s=-\frac{1}{R C}
$$

- Solution

$$
v_{A}=k_{1} e^{-t /(R C)}+0
$$

- Time Constant

$$
\begin{gathered}
v_{A}=k_{1} e^{-t / \tau} \\
\tau=R C
\end{gathered}
$$

- Still One Unknown $\left(k_{1}\right)$

General Boundary Conditions

Initial Conditions

$$
\begin{gathered}
i=-C \frac{d v_{A}}{d t} \\
i=\frac{v}{R}
\end{gathered}
$$

$$
v_{A}=k_{1} e^{s t}+k_{2}
$$

- From Earlier Page

$$
\begin{gathered}
v_{A}=k_{1} e^{-t / \tau} \\
\tau=R C
\end{gathered}
$$

- Original Voltage $V\left(\mathrm{O}^{-}\right)$
- Boundary Condition

$$
V\left(\mathrm{o}^{+}\right)=V\left(\mathrm{O}^{-}\right)
$$

- At $t=0$

$$
k_{1} e^{-0 / \tau}=k_{1}=V\left(0^{+}\right)
$$

- Solution

$$
v_{A}=V\left(0^{-}\right) e^{-t / \tau}
$$

Exponential Solutions

$$
v_{a}=v_{a}(0) e^{-t / \tau} \quad v_{a}(\tau)=v_{a}(0) \times \frac{1}{e} \approx v_{a}(0) \times 0.3679
$$

$$
v_{a}(2 \tau) \approx v_{a}(0) \times 0.1353 \quad v_{a}(10 \tau) \approx v_{a}(0) \times 4.540 \times 10^{-5}
$$

Steady-State Solution

$$
\begin{gathered}
i=-C \frac{d v_{A}}{d t} \\
i=\frac{v}{R} \\
v_{A}=k_{1} e^{s t}+k_{2}
\end{gathered}
$$

- Steady State

$$
t \rightarrow \infty
$$

- Anything that is going to happen has happened

$$
\frac{d \text { Anything }}{d t}=0
$$

- Transient Solution is Zero

$$
\frac{d v_{A}}{d t}=0 \quad i=0
$$

- Solution

$$
k_{2}=0=v_{A \infty}
$$

Charge and Discharge

Close S_{1} at $t=0$. Open S_{1} at $t=t_{1}$. What will happen?

Charge!

Thévenin Equivalent Charging

$$
\begin{gathered}
v_{T}=v_{S} \frac{R_{2}}{R_{1}+R_{2}} \\
R_{T}=R_{1} \| R_{2} \\
v_{A}(0)=0
\end{gathered}
$$

Assume

Charging Equations

$$
\begin{gathered}
v_{T}=v_{S} \frac{R_{2}}{R_{1}+R_{2}} \\
R_{T}=R_{1} \| R_{2} \\
v_{A}(0)=0
\end{gathered}
$$

$$
\begin{aligned}
& i=\frac{v_{T}-v_{A}}{R_{T}}=C \frac{d v_{A}}{d t} \\
& v_{T}-v_{A}=R_{T} C \frac{d v_{A}}{d t} \\
& v_{A}+R_{T} C \frac{d v_{A}}{d t}=v_{T}
\end{aligned}
$$

Proposed Solution

$$
\begin{gathered}
v_{A}=k_{1} e^{s t}+k_{2} \\
k_{1} e^{s t}+k_{2}+R_{T} C \frac{d}{d t}\left(k_{1} e^{s t}+k_{2}\right)=v_{T} \\
k_{1} e^{s t}\left(1+R_{T} C s\right)+k_{2}=v_{T} \\
s=\frac{-1}{R_{T} C} \quad k_{2}=v_{T}
\end{gathered}
$$

Charging Solution

$$
\begin{gathered}
v_{T}=v_{S} \frac{R_{2}}{R_{1}+R_{2}} \\
R_{T}=R_{1} \| R_{2} \\
v_{A}(0)=0
\end{gathered}
$$

- From Previous Page

$$
\begin{gathered}
v_{A}=k_{1} e^{s t}+k_{2} \\
s=\frac{1}{R_{T} C} \quad k_{2}=v_{T} \\
v_{A}=k_{1} e^{-t /\left(R_{T} C\right)}+v_{T}
\end{gathered}
$$

- Initial Condition

$$
\begin{gathered}
v_{A}(0)=k_{1}+v_{T} \\
v_{A}(0)=0 \quad k_{1}=-v_{T}
\end{gathered}
$$

- Solution

$$
v_{A}=v_{T}\left(1-e^{-t /\left(R_{T} C\right)}\right)
$$

Charging Result

- From Previous Page

$$
\begin{gathered}
v_{T}=v_{S} \frac{R_{2}}{R_{1}+R_{2}} \\
R_{T}=R_{1} \| R_{2} \\
v_{A}(0)=0
\end{gathered}
$$

$$
v_{A}=v_{T}\left(1-e^{-t /\left(R_{T} C\right)}\right)
$$

- Use v_{T} and R_{T}

$$
\begin{gathered}
v_{A}=v_{s} \frac{R_{2}}{R_{1}+R_{2}} \times \\
\left\{1-e^{-t /\left(\left(R_{1} \| R_{2}\right) C\right]}\right\}
\end{gathered}
$$

- Assume $R_{1} \ll R_{2}$

$$
v_{A} \approx v_{s} \times\left\{1-e^{-t /\left(R_{1} C\right]}\right\}
$$

- Example

$$
\begin{gathered}
R_{1}=100 \Omega \quad C=100 \mu \mathrm{~F} \\
\tau \approx R_{1} C=10 \mathrm{~ms}
\end{gathered}
$$

Charging Voltage

Diode: The Magic Switch

- $i>0$ and $v \approx 0$
(Directon of the "Arrow")
- $v>0$ and $i \approx 0$
(Directon of the "Arrow")
- Switches "ON" to Charge when $v_{s}>v_{A}$
- Switches "OFF" to Discharge when $v_{s}<v_{A}$

Discharge!

- Thévenin Equivalent

$$
v_{T}=0 \quad R_{T}=R_{2}
$$

- Initial Voltage
- Open S_{1} at $t=t_{1}$

$$
\begin{aligned}
& v_{A}\left(t_{1}\right)=v_{s} \frac{R_{2}}{R_{1}+R_{2}} \times \\
& \left\{1-e^{-t_{1} /\left(\left(R_{1} \| R_{2}\right) C\right]}\right\}
\end{aligned}
$$

- We've seen this before

$$
v_{A}=v_{A}\left(t_{1}\right) e^{-\left(t-t_{1}\right) /\left(R_{2} C\right)}
$$

- Example: $R_{2}=10 \mathrm{k} \Omega$

$$
v_{A}=v_{A}\left(t_{1}\right) e^{-\left(t-t_{1}\right) / \tau_{D}}
$$

Summary

- Charge

$$
v_{A}=v_{s} \frac{R_{2}}{R_{1}+R_{2}}\left\{1-e^{-t / \tau_{C}}\right\}
$$

- Charging Time Constant

$$
\tau_{C}=\left(R_{1} \| R_{2}\right) C
$$

- End of Actual Charge

$$
v_{C}=v_{s} \frac{R_{2}}{R_{1}+R_{2}}\left\{1-e^{-t_{1} / \tau_{C}}\right\}
$$

- Discharge

$$
v_{A}=v_{C}\left(t_{1}\right) e^{-\left(t-t_{1}\right) / \tau_{D}}
$$

- Discharge Time Constant

$$
\tau_{D}=R_{2} C
$$

Charging and Discharging Voltage

Repeated Charging and Discharging Voltage

AC Coupled Amplifier

Steady State?, Transient?

