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Week 7 Agenda:

• Time–Varying Systems

• Capacitors

• Inductors

• Differential Equations

• Steady State and Transient Solutions
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Big Picture

Devices

Resistors Capacitors Inductors

v = iR v = 1
C

∫

i dt i = 1
L

∫

v dt

i = Cdv
dt v = Ldi

dt
R in Ohms C in Farads L in Henries

Voltage Continuous Current Continuous

Open to DC Short to DC

Circuits

RC or RL LC RLC

First Order DE Second Order DE 2nd with Loss

Negative Exponentials Sinusoids Lossy Sinusoids

We can do interesting things with time–varying sources.
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Differential Equations

i = Cdv
dt v = iR v = Ldi

dt KCL, KVL, etc.

• Differential Equation

a
d2z

dt2
+ b

dz

dt
+ cz + d = 0

• Steady State

cz + d = 0 = constant

• Transient: (Mostly Switches) Solve DE & BC

• Steady–State Sinusoids:
d|z|ejωt

dt = jω|z|ejωt

−aω2z + jbωz + cz + d = 0
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Agenda: Capacitors

• Physical Concepts

• Symbols

• i–v Behavior

• Fabrication

• Power and Energy

• Parallel and Series Combinations

• Steady–State Solutions

• Charge and Discharge
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Capacitors (1)

Oct 2022 Chuck DiMarzio, Northeastern University 12492..slides7–5



Capacitors (2)

Electrolytics
Big Capacitors

Principal Specifications: Capacitance (Farads), Maximum Voltage
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Symbols
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Equations

• Charge and Voltage:

q = Cv

• Charge and Current:

i = dq
dt

• Current and Voltage:

i = Cdv
dt

• Voltage and Charge:

v = q
C

• Current and Charge:

q(t) =
∫

i(t)dt

• Voltage and Current:

v(t) =
∫ i
Cdt

• Electrons:

n = Cv
e

dv

dt
→ ∞ : i → ∞

dv

dt
→ 0 : i → 0
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Voltage Source

i(t) = C
dv(t)

dt
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Example

i(t) = C
dv(t)

dt
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What Will Happen?

i(t) = C
dv(t)

dt
finite i → Voltage Continuous in Time
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What Will Happen?

(1) Close S1 (2) Open S1 (3) Close S2
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Current Source

v (t) =
1

C

∫ t

t0
i (t) dt+ v (t0)
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Fabrication

C =
ǫA

d
ǫ is the Dielectric Constant
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Equations

C =
ǫA

d

ǫ = ǫrǫ0

ǫ0 = 8.85× 10−12F/m

Useful Term: Relative dielectric constant, ǫr

ǫr = 1 for vacuum. Pretty close for air.
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Example

High Voltage

Small d
→ Breakdown

Dry Air at Sea Level:

≈ 30kV/cm*

Glass: ≈ 100kV/cm

C =
ǫA

d
= 10µf

ǫ = 3.9ǫ0 SiO2

A

d
= 3× 105m

d = 10µm A = 3m

Interleave, Roll, or otherwise

work to get more A

Use high ǫr

Use high Breakdown Voltage
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Power and Energy

Power

p (t) = v (t) i (t) p (t) = v (t)C
dv (t)

dt

Energy

w =
∫

p (t) dt =
v2C

2

Example

w =
(100V)2 100µF

2
= 500mJ
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Parallel Combinations

in = Cn
dvn

dt
i =

∑

in C =
∑

Cn
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Series Combinations

i

Cn
=

dvn

dt

dv

dt
=

∑ dvn

dt

1

C
=

∑ 1

Cn
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Parallel/Series Summary

Series Parallel

Voltage Sources v =
∑

vn Contradictory

Current Sources Contradictory i =
∑

in

Resistors R =
∑

Rn
1
R =

∑ 1
Rn

Capacitors 1
C =

∑ 1
Cn

C =
∑

Cn

Oct 2022 Chuck DiMarzio, Northeastern University 12492..slides7–20



Example Problem

C1:6 = 1µF CAB =?
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Steady State

• DC Sources, Resistors, Capacitors (and later Inductors)

• t → ∞ with No Non–DC Sources

•
d(anything)

dt → 0

• Specifically
dvcapacitor

dt → 0

• Therefore icapacitor = 0

• Treat Capacitors as Open and Solve
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Steady–State Example

Turn on Vs at t = 0, Wait a Long Time,
vA =? vB =? vC =? iL =?
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Real Capacitors

Rs, L Low. Rp High.
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Don’t Try this at Home, Kids!

High–Voltage Capacitor:

v = 10kV C = 10,000µF Rp = 10GΩ

Discharge Time at Constant Current:

q = Cv = 10 Coulombs

i (0) =
v

RP
= 1µA

t =
q

i
= 107sec = 116 Days

Exponential decay will be slower. . .

Unless you put a low resistor across it.

Then very bad things can happen.
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“Shorting Bar”
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Agenda: Inductors

• Physical Concepts

• Symbols

• i–v Behavior

• Fabrication

• Power and Energy

• Parallel and Series Combinations

• Steady–State Solutions

• “Instantaneous” Current Change

Oct 2022 Chuck DiMarzio, Northeastern University 12492..slides7–27



The Inductor

• Coil of Wire

• Air or Ferromagnetic Core

• Current → Magnetic Field

(Electromagnet)

• Changing Field → Voltage

(Faraday’s Law)

• Voltage Opposes Change in Current

v (t) = L
di (t)

dt timetoast.com

www.electrical4u.net
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Symbol
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Voltage Source

i(t) =
∫

v(t) dt
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Current Source

v(t) = L
di(t)

dt
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i–v Behavior

v(t) = L
di(t)

dt
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Step Current

Voltage is Finite so Current is Continuous
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Values

v = L
di

dt

Typical Values:

Volts = L
mA

ms

L in
Vs

A
= Henries = H

mH, µH Common in RF.

kH Do Exist.
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Fabrication

• Coil of Wire (Many Turns)

• Field of a solenoid

B (t) =
µN

ℓ
i (t)

• Inductance of a solenoid

v (t) =
µAN2

ℓ

di (t)

dt
L =

µAN2

ℓ

• Air, Iron, Ferrite Core (Increased Field)

• Solenoid, Toroid, Helmholz Coils etc.

• Many Options

µ = µr × 1.26× 10−6H/m
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Inductors

indiamart.com components101.com toroids.com

falconacoustics.co.uk
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More Inductors & Transformers

kintronic.com

polytechnichub.com

globalspec.com

coloradocountrylife.coop

electricianinperth.com.au
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Helmholz Coils

3bscientific.com

magnetic-instrument.com
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Real Inductors

Rs, Cp Small. Rp Large
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Power and Energy

v (t) = L
di (t)

dt

p (t) = i (t) v (t) = i (t)L
di (t)

dt

w =
∫

p (t) dt =
i2L

2

Example: Still Another Cup of Coffee

w = 42kJ i2L = 84kJ

L = 6H i = 118A

Note: At DC v ≈ 0, so p ≈ 0, except during turn–on and turn–off.

These times can be exciting!
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MRI Magnet Quench

fickr.com Superconducting magnet in use, Low T , Rs, v, High i.

In quench, −di/dt ↑, T ↑, Rs ↑, High v, i, p.
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Inductors in Series

vn = Ln
di

dt
v =

∑

vn L =
∑

Ln

Just Like Resistors
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Parallel Inductors

1

Ln

din

dt
= v

di

dt
=

∑ din

dt

L

=

∑ 1

Ln

Just Like Resistors Again
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Parallel/Series Summary

Series Parallel

Voltage Sources v =
∑

vn Contradictory

Current Sources Contradictory i =
∑

in

Resistors R =
∑

Rn
1
R =

∑ 1
Rn

Inductors L =
∑

Ln
1
L =

∑ 1
Ln

Capacitors 1
C =

∑ 1
Cn

C =
∑

Cn
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Parallel/Series Example (1)

LAB = L1 + {L4 ‖ [L2 + L3 + (L8 ‖ L9) + L7] + [L5 ‖ L6]}
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Parallel/Series Example (2)

L1:9 = 1mH

L23897 = 1+1+
1

2
+1 = 3.5mH

L423897 = 1 ‖ 3.5 = 778µH

LAB = 1+ 0.778+
1

2
= 2.28mH
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Mutual Inductance

• Two or More Coils

• Same Core

v1 (t) = L1
di1 (t)

dt
+M

di2 (t)

dt

v2 (t) = L2
di2 (t)

dt
+M

di1 (t)

dt

• M Same Units as L

• Transformers

– AC Only

– Higher Frequency

→ Smaller
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Inductors at DC (Steady State)

Cp Open, L Short, Rp Large (ignore). All that’s left is Rs

(just the resistance of the wire). v = iRs → 0
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Steady State

Steady State (Short L, Open C): vo = −vinR2/R1 and Rout = 0
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What Happens?

S1, S2 Closed. Open S1, Wait, Open S2
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Jacob’s Ladder

https://www.youtube.com/watch?v=PXiOQCRiSp0
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Agenda:
First–Order Circuits

• RC Circuits

• Boundary Conditions

• Steady State Solutions

• Charge and Discharge a Capacitor

• RL Circuits

• Some Examples
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Time–Varying Sources

• Transient Analysis (Now)

– Differential Equations

– First Order for RL, RC

– Second Order for RLC

– Circuits Usually Involve Switches

– Transient and Steady–State Solutions

• Sinusoidal Solution (Later)

– Phasor Analysis (ddt = j2πf)

– Complex Impedance

– “Easy” Solutions

– Fourier Series and Transforms
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Transient Solution Approach

• Write the Differential Equation (KCL, KVL, Component Eqns.)

• Postulate a Solution: Exponential, Sinusoid, Constant

• Solve for Some Unknowns

• Solve Steady–State Problem for Final Condition

• Use Continuity for Initial Condition
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RC Circuit

Start with vA 6= 0 (eg. use a switch)

i = C
dv

dt
i = −C

dvA
dt

vA = iR
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RC Equations

i = −C
dvA
dt

i =
v

R

• Differential Equation

vA = −RC
dvA
dt

• Test Solution

vA = k1e
st + k2

• Substitute

k1e
st+k2 = −RC

d

dt

(

k1e
st + k2

)

• Take the Derivative

k1e
st + k2 = −RCsk1e

st

• Group

k1 (1 +RCs) est − k2 = 0
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RC Solution

i = −C
dvA
dt

i =
v

R

vA = k1e
st + k2

• From Previous Page

k1 (1 +RCs) est − k2 = 0

• True for All Time (Above is

zero term–by–term

k2 = 0 s = −
1

RC
• Solution

vA = k1e
−t/(RC) +0

• Time Constant

vA = k1e
−t/τ

τ = RC

• Still One Unknown (k1)
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General Boundary Conditions

Not Valid for Capacitors OK

Not Valid for Inductors OK

Oct 2022 Chuck DiMarzio, Northeastern University 12492..slides7–58



Initial Conditions

i = −C
dvA
dt

i =
v

R

vA = k1e
st + k2

• From Earlier Page

vA = k1e
−t/τ

τ = RC

• Original Voltage V
(

0−
)

• Boundary Condition

V
(

0+
)

= V
(

0−
)

• At t = 0

k1e
−0/τ = k1 = V

(

0+
)

• Solution

vA = V
(

0−
)

e−t/τ
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Exponential Solutions

va = va (0) e
−t/τ va (τ) = va (0)×

1

e
≈ va (0)× 0.3679

va (2τ) ≈ va (0)× 0.1353 va (10τ) ≈ va (0)× 4.540× 10−5
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Steady–State Solution

i = −C
dvA
dt

i =
v

R

vA = k1e
st + k2

• Steady State

t → ∞

• Anything that is going to

happen has happened

dAnything

dt
= 0

• Transient Solution is Zero

dvA
dt

= 0 i = 0

• Solution

k2 = 0 = vA∞
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Charge and Discharge

Close S1 at t = 0. Open S1 at t = t1. What will happen?
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Charge!

Thévenin Equivalent Charging

vT = vS
R2

R1 +R2

RT = R1 ‖ R2

Assume

vA (0) = 0
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Charging Equations

vT = vS
R2

R1 +R2

RT = R1 ‖ R2

vA (0) = 0

i =
vT − vA

RT
= C

dvA
dt

vT − vA = RTC
dvA
dt

vA +RTC
dvA
dt

= vT

Proposed Solution

vA = k1e
st + k2

k1e
st+k2+RTC

d

dt

(

k1e
st + k2

)

= vT

k1e
st (1 +RTCs) + k2 = vT

s =
−1

RTC
k2 = vT
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Charging Solution

vT = vS
R2

R1 +R2

RT = R1 ‖ R2

vA (0) = 0

• From Previous Page

vA = k1e
st + k2

s =
1

RTC
k2 = vT

vA = k1e
−t/(RTC) + vT

• Initial Condition

vA (0) = k1 + vT

vA (0) = 0 k1 = −vT

• Solution

vA = vT
(

1− e−t/(RTC)
)

Oct 2022 Chuck DiMarzio, Northeastern University 12492..slides7–65



Charging Result

vT = vS
R2

R1 +R2

RT = R1 ‖ R2

vA (0) = 0

• From Previous Page

vA = vT
(

1− e−t/(RTC)
)

• Use vT and RT

vA = vs
R2

R1 +R2
×

{

1− e−t/((R1‖R2)C]
}

• Assume R1 ≪ R2

vA ≈ vs ×
{

1− e−t/(R1C]
}

• Example

R1 = 100Ω C = 100µF

τ ≈ R1C = 10ms
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Charging Voltage

vA∞ = vT ≈ vs τC ≈ R1C vA (τC) ≈ (1− 0.3679) vs = 0.6321vs
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Diode: The Magic Switch

• i > 0 and v ≈ 0

(Directon of the “Arrow”)

• v > 0 and i ≈ 0

(Directon of the “Arrow”)

• Switches “ON” to

Charge when vs > vA
• Switches “OFF” to

Discharge when vs < vA
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Discharge!

• Thévenin Equivalent

vT = 0 RT = R2

• Initial Voltage

• Open S1 at t = t1

vA (t1) = vs
R2

R1 +R2
×

{

1− e−t1/((R1‖R2)C]
}

• We’ve seen this before

vA = vA (t1) e
−(t−t1)/(R2C)

• Example: R2 = 10kΩ

vA = vA (t1) e
−(t−t1)/τD

τD = 1s
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Summary

• Charge

vA = vs
R2

R1 +R2

{

1− e−t/τC
}

• Charging Time Constant

τC = (R1 ‖ R2)C

• End of Actual Charge

vC = vs
R2

R1 +R2

{

1− e−t1/τC
}

• Discharge

vA = vC (t1) e
−(t−t1)/τD

• Discharge Time Constant

τD = R2C
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Charging and Discharging
Voltage
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Repeated Charging and
Discharging Voltage

Oct 2022 Chuck DiMarzio, Northeastern University 12492..slides7–72



AC Coupled Amplifier

Steady State?, Transient?
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