Circuits and Signals: Biomedical Applications Week 6

Charles A. DiMarzio
EECE-2150
Northeastern University

Oct 2023

Week 6 Agenda:

- Digital and Analog Data
- Sampling
- Complex Numbers
- Basics
- Mathematical Operations
- Sinusoids

Digitization

In a computer, all data is digital: Discrete in time, limited resolution. $f_{s}=60 / \mathrm{hr}$, Elevation Step Size $=3 \mathrm{~m}$: What is $d E / d t$?
$\operatorname{Max}(E) ? \operatorname{Min}(E)$,

Issues

- f_{s} Sample Frequency
- Missing Data
- Aliasing
- Sampling Theorem $f_{s}>2 f_{\max }$ (Nyquist)
- Range and Number of Bits
- Step Size $=\frac{\text { max-min }}{2^{n}}:$ e.g. 1 count $=3$ meters
- Dynamic Range $\frac{\text { max-min }}{\text { step }}=2^{n}$:
e.g. $\max -\min =3$ meters $\times 2^{14}$ for 14 bits.

Sine Wave

New Concept: Nyquist Theorem (Sample at twice highest frequency)

Way Oversampled Sine Wave

$f_{0}=2 \mathrm{~Hz}$ (Sampled at $f_{s} 10.085 \mathrm{kHz}$)
Keeps Nyquist Happy and Just Plotting the Points Looks Pretty Good

Sampled Sine Wave

$f_{0}=2 \mathrm{~Hz}, f_{s}=5 \mathrm{kHz}$: Keeps Nyquist Happy but Looks Bad Nyquist Says we can recover the signal: Not that it's easy.

Undersampled Sine Wave

$f_{s}=1520 \mathrm{~Hz}$: Very Unhappy Nyquist: Wrong Frequency. There is no way to recover the signal.

Complex Numbers

- The Complex Unit (New Concept)

$$
i=j=\sqrt{-1}
$$

- Real and Imaginary Parts

$$
\operatorname{Re}(z)=x \quad \operatorname{Im}(z)=y \quad z=x+j y
$$

- Addition

$$
z_{1}+z_{2}=x_{1}+x_{2}+j\left(y_{1}+y_{2}\right)
$$

- Powers of the Complex Unit

$$
j=\sqrt{-1} \quad j^{2}=-1 \quad j^{3}=-j \quad j^{4}=1 \quad \text { etc. }
$$

Deriving Euler's Formula

- Taylor Series for Exponential

$$
\begin{gathered}
e^{j \phi}=1+\frac{(j \phi)}{1!}+\frac{(j \phi)^{2}}{2!}+\frac{(j \phi)^{3}}{3!}+\ldots \\
e^{j \phi}=1+\frac{j \phi}{1!}+\frac{-\phi^{2}}{2!}+\frac{-j \phi^{3}}{3!}+\ldots
\end{gathered}
$$

- Cosine and Sine

$$
\cos \phi=1-\frac{\phi^{2}}{2!}+\ldots \quad j \sin \phi=j \frac{\phi}{1!}-j \frac{\phi^{3}}{3!}+\ldots
$$

- Euler's Formula

$$
e^{j \phi}=\cos \phi+j \sin \phi
$$

i or j: In EE, it's j

- Imaginary Unit

$$
\sqrt{-1}= \pm i
$$

- But in EE, i is Current
- We use j
$\sqrt{-1}= \pm j$

WPJ

- Euler's Formula

$$
\begin{aligned}
e^{j \theta} & =\cos \theta+j \sin \theta \\
e^{j \omega t} & =\cos \omega t+j \sin \omega t
\end{aligned}
$$

- Cosine and Sine

$$
\begin{aligned}
& \cos \omega t=\frac{e^{j \omega t}+e^{-j \omega t}}{2} \\
& \sin \omega t=\frac{e^{j \omega t}-e^{-j \omega t}}{2 j}
\end{aligned}
$$

- Why Exponentials?
- Compact Notation
- Easy Math

Some Things are Easier

- Euler's Formula

$$
e^{j \theta}=\cos \theta+j \sin \theta \quad e^{j \omega t}=\cos \omega t+j \sin \omega t
$$

- Including a Phase Shift is Simpler: Who remembers the cosine of a sum?

$$
\cos (\omega t+\phi)=\frac{e^{j(\omega t+\phi)}}{2}+\frac{e^{-j(\omega t+\phi)}}{2}
$$

- Derivatives Are Simple

$$
\frac{d e^{j \omega t}}{d t}=j \omega e^{j \omega t} \quad \frac{d e^{-j \omega t}}{d t}=-j \omega e^{-j \omega t}
$$

- Derivatives Are Important for Capacitors and Inductors

Math Operations

- Addition/Subtraction Again (Think of z as v or i)

$$
z_{1}+z_{2}=x_{1}+x_{2}+j\left(y_{1}+y_{2}\right)
$$

- Multiplication

$$
\begin{gathered}
z_{1} z_{2}=\left(x_{1}+j y_{1}\right)+\left(x_{2}+j y_{2}\right) \\
z_{1} z_{2}=x_{1} x_{2}-y_{1} y_{2}+j\left(x_{1} y_{2}+x_{2} y_{1}\right)
\end{gathered}
$$

- Complex Conjugate (New Concept)

$$
z^{*}=x-j y \quad(=\operatorname{conj}(z) \text { in Matlab })
$$

The Complex Conjugate

- Some Rules that Make Life Easier

$$
\begin{aligned}
\left(z_{1}+z_{2}\right)^{*} & =z_{1}^{*}+z_{2}^{*} \\
\left(z_{1} z_{2}\right)^{*} & =z_{1}^{*} z_{2}^{*}
\end{aligned}
$$

- Some Real Useful Results
- Useful for getting real results

$$
z+z^{*}=(x+j y)+(x-j y)=2 x=2 \operatorname{Re}(z)
$$

- Useful for talking about power

$$
z z^{*}=|z|^{2}
$$

Phasors

Polar Form

- Amplitude

$$
|z|^{2}=x^{2}+y^{2}=z z^{*} \quad|z|=\sqrt{x^{2}+y^{2}}
$$

- Phase (naturally in radians)

$$
\begin{gathered}
\phi=\arctan (y / x) \quad \text { but be careful which quadrant } \\
\operatorname{angle}(z) \text { in Matlab does the right thing.) }
\end{gathered}
$$

- Don't use phase(z) in Matlab.
- Notation for Polar Form (Be careful of radians and degrees)

$$
z=|z| \angle \phi \quad \text { e.g. } \quad 17 \angle \frac{\pi}{3} \quad \text { or } \quad A \angle \phi \quad \text { or } \quad(4 \mathrm{~mA}) \angle 23^{\circ}
$$

Be Careful with Phase

$x+j y$ and $-x-j y$ have different phases although $\arctan (y / x)=\arctan (-y /-x)$
Remember that angle(z) in Matlab does the right thing.

Rectangular Form

Sinusoids and Phasors

If $\phi=0$ real part is $|z| \cos \omega t$ In general, real part is $|z| \cos (\omega t+\phi)$.

Using Negative Frequencies

$|z| e^{j(\omega t+\phi)}$
$+$

$|z| e^{-j(\omega t+\phi)}$

$$
z+z^{*}=2 \operatorname{Re}(z)
$$

If $\phi=0$ real part is $2|z| \cos \omega t$.
In general, real part is $2|z| \cos (\omega t+\phi)$.

A Little Confusion

$|z| e^{j(\omega t+\phi)}$

$+$

$$
|z| e^{-j(\omega t+\phi)}
$$

$$
z+z^{*}=2 \operatorname{Re}(z)
$$

For linear problems we can just solve the positive frequency part.
Then the negative-frequency part is just the conjugate.
Some people like to add the complex conjugate.
Some like to take the real part.
It's easy to make errors of factors of 2 .

Be Able to...

- Perform Math on Complex Numbers ...
- Convert Between Polar and Rectangular ...
- ... on Paper
- ... on Your Computer
- ... on Your Calculator
- Find the Phasor for a Sinusoid
- Find the Sinusoid from a Phasor

