Circuits and Signals: Biomedical Applications Week 4

Charles A. DiMarzio
EECE-2150
Northeastern University

Sep 2023

Week 4 Agenda

- Source Transformation
- Thévenin Equivalent Circuit
- Norton Equivalent Circuit
- Superposition
- Class Problems
- Determining Equivalent Circuits
- Using Equivalent Circuits
- Wheatstone Bridge

Why Equivalent Circuits

Each box contains a complicated Circuit. . .

.. . but we don't really care what is in them.

Equivalent Circuits

A Circuit

I-V PLots

Thévenin

Norton
R_{4} is the Load: Analyze everything else.
For a linear circuit, i vs. v is a straight line. Need two of $v_{o c}, i_{s c}, R_{T}$

- Calculation Options: Use any one.
- Calculate $V_{o c}$ and $i_{s c}$
- Calculate $V_{o c}$ and R_{T}
- Calculate R_{T} and $i_{s c}$
- Equivalent Circuits
- Thévenin: Voltage Source, $V_{o c}$, with Series R_{T}
- Norton: Current Source, $i_{s c}$, with Parallel $R_{N}=R_{T}$

Thévenin Equivalent Circuit

$$
R_{1}=1 \mathrm{k} \Omega, R_{2}=1 \mathrm{k} \Omega, R_{3}=5 \mathrm{k} \Omega, v_{s}=12 \mathrm{~V}, i_{s}=6 \mathrm{~mA}
$$

R_{4} is the Load: Draw a circuit for everything else.
Linear Circuits: i vs. v is a straight line.
We need two points to determine the line.
$i=0$: Open Circuit Voltage. $v=0$: Short-Circuit Current
Load Resistor: $i=\frac{v}{R_{4}}$ Everything Else: $i=\frac{v_{T}-v}{R_{T}}$

Thévenin Concept

Circuit Equation

$$
\begin{aligned}
& i=\frac{v_{T}-v}{R_{T}} \\
& \text { Load Line }
\end{aligned}
$$

Load Equation

$$
i=\frac{v}{R}
$$

Solution is at the intersection.

Thévenin Calculation: $v_{o c}, i_{s c}$

- Calculate Open-Circuit Voltage, $v_{o c}$.
- Calculate Short-Circuit Current, $i_{s c}$.
- Find Equivalent Circuit, $v_{T}=v_{o c}$ and $R_{T}=\frac{v_{o c}}{i_{s c}}$.

Thévenin Calculation

- OC: Draw with one equivalent resistor: $v_{A}=v_{s}+i_{s}\left[R_{1} \|\left(R_{2}+R_{3}\right)\right]$, Voltage Divider: $v_{o c}=v_{s}+\left(v_{A}-v_{s}\right) \frac{R_{3}}{R_{3}+R_{2}}=16.28 \mathrm{~V}$.
- SC: $\frac{v_{s}-v_{A}}{R_{1}}+i_{s}-\frac{v_{A}}{R_{2}}=0,\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) v_{A}=\frac{v_{s}}{R_{1}}+i_{s}$
$v_{A}=9 \mathrm{~V}, i_{s c}=\frac{v_{s}}{R_{3}}+\frac{v_{A}}{R_{2}}=11.4 \mathrm{~mA}$
- Equivalent Circuit, $v_{T}=16.28 \mathrm{~V}$ and $R_{T}=\frac{v_{o c}}{i_{s c}}=1430 \mathrm{Ohms}$.

Alternative: Find R_{T}

Zero the Sources:
Voltage Sources Shorted ($v=0$)
Current Sources Opened ($i=0$)
Use Series and Parallel Combinations
Do This if $v_{o c}$ or $i_{s c}$ Looks Messy.
In This Example, $R_{T}=\left(R_{1}+R_{2}\right) \| R_{3}=14300 \mathrm{hms}$

Thévenin Example: Parallel Batteries

Parallel Batteries Solution

$$
v_{1}=12 \mathrm{~V}, R_{1}=1 \Omega, v_{2}=11.9 \mathrm{~V}, R_{2}=3 \Omega
$$

Voltage Divider

$$
v_{o c}=v_{1}-\left(v_{1}-v_{2}\right) \frac{R_{1}}{R_{1}+R_{2}}
$$

$$
v_{1} \frac{R_{2}}{R_{1}+R_{2}}+v_{2} \frac{R_{1}}{R_{1}+R_{2}}
$$

$$
=\frac{v_{1} R_{2}+v_{2} R_{1}}{R_{1}+R_{2}}
$$

$$
=11.97 \mathrm{~V}
$$

KCL

$$
i_{s c}=\frac{v_{1}}{R_{1}}+\frac{v_{2}}{R_{2}}=\frac{v_{1} R_{2}+v_{2} R_{1}}{R_{1} R_{2}}
$$

Thévenin Resistor

$$
R_{T}=\frac{v_{o c}}{i_{s c}}=0.75 \Omega
$$

Norton Equivalent Circuit

R_{4} is the Load: Draw a circuit for everything else.
Linear Circuits: i vs. v is a straight line.
We need two points to determine the line.
$i=0: V_{o c}=16.28 \mathrm{~V} . v=0: i_{s c}=11.4 \mathrm{ma}$
Load Resistor: $i=\frac{v}{R_{4}}$

> Solution: Current Divider

Everything Else: $i=i_{N}-\frac{v}{R_{N}}$

Norton Example

From Thévenin Equivalent

$$
\begin{gathered}
v_{o c}=11.97 \mathrm{~V} \quad R_{T}=0.75 \Omega \\
i_{s c}=\frac{v_{1}}{R_{1}}+\frac{v_{2}}{R_{2}}=\frac{v_{1} R_{2}+v_{2} R_{1}}{R_{1} R_{2}}=15.96 \mathrm{~A}
\end{gathered}
$$

Norton Equivalent

$$
i_{N}=i_{s c}=15.96 \mathrm{~A} \quad R_{N}=R_{T}=0.75 \Omega
$$

Superposition Example (1)

Superposition Example (2)

Original

Zero Current Source Open

Zero Voltage Source Short

- Zero the Sources One at a Time
- Solve the Circuit for All Unknowns in Each Case
- Sum the Results

Superposition Solution

Series-Parallel Solution

$$
\begin{gathered}
i=v_{s} /\left[\left(R_{1}+R_{2}\right) \| R_{3}\right]+R_{4} \\
v_{B}=i R_{4}
\end{gathered}
$$

Voltage Divider

$$
v_{A}=v_{s}+\left(v_{B}-v_{s}\right) \frac{R_{1}}{R_{1}+R_{2}}
$$

Series-Parallel Solution

$$
v_{A}=i_{s}\left\{R_{1} \|\left[R_{2}+\left(R_{3} \| R_{4}\right)\right]\right\}
$$

Current Divider (i_{2} to the right)

$$
\begin{gathered}
i_{2}=i_{s} \frac{R_{1}}{R_{1}+R_{2}+\left(R_{3} \| R_{4}\right)} \\
v_{B}=i_{2}\left(R_{3} \| R_{4}\right)
\end{gathered}
$$

Conclusion

$$
v_{s}=12 \mathrm{~V}, i_{s}=6 \mathrm{~mA}, R_{1}=R_{2}=1 \mathrm{k} \Omega, R_{3}=5 \mathrm{k} \Omega, R_{4}=200 \Omega
$$

$$
\begin{gathered}
v_{2} \\
v_{A}=3.26 \mathrm{~V} \\
v_{B}=0.53 \mathrm{~V}
\end{gathered}
$$

$$
v_{A}=10.0 \mathrm{~V} \quad v_{B}=2.0 \mathrm{~V}
$$

Same Result We Had Before.

Parallel Batteries: Superposition

$$
v_{1}=12 \mathrm{~V}, R_{1}=1 \Omega, v_{2}=11.9 \mathrm{~V}, R_{2}=3 \Omega
$$

$v_{L}=v_{1} \frac{R_{L} \| R_{2}}{R_{1}+\left(R_{L} \| R_{2}\right)}=7.83 \mathrm{~V}$

$$
v_{L}=v_{2} \frac{R_{L} \| R_{1}}{R_{2}+\left(R_{L} \| R_{1}\right)}=2.59 \mathrm{~V}
$$

$$
v_{L}=7.83 \mathrm{~V}+2.59 \mathrm{~V}=10.4 \mathrm{~V}
$$

Balancing the Load

Source: $v_{s}=120 V$ RMS. Bad Ground: $R_{0}=20 \Omega$
Lights: $R_{1}=14.4 \Omega, R_{2}=144 \Omega$. Stove: $R_{3}=R_{4}=7.2 \Omega$.

Stove Off

Voltage Divider with Top Source: Zero Bottom so $R_{2} \| R_{0}$

$$
v_{1}=v_{s} \frac{R_{1}}{R_{1}+\left(R_{0} \| R_{2}\right)} \quad v_{2}=v_{s} \frac{R_{0} \| R_{2}}{R_{1}+\left(R_{0} \| R_{2}\right)}
$$

Bottom Source: Zero Top so $R_{1} \| R_{0}$

$$
v_{1}=-v_{s} \frac{R_{1} \| R_{0}}{R_{2}+\left(R_{0} \| R_{1}\right)} \quad v_{2}=-v_{s} \frac{R_{2}}{R_{2}+\left(R_{0} \| R_{1}\right)}
$$

Total

$$
\begin{array}{lll}
v_{1}=60.7 \mathrm{~V} & v_{2}=179.3 \mathrm{~V} & \text { Check } v_{1}+v_{2}=240 \mathrm{~V} \\
v_{A}=120 \mathrm{~V} & v_{B}=-120 \mathrm{~V} & v_{0}=v_{A}-v_{1}=59.3 \mathrm{~V}
\end{array}
$$

Stove On: Balance Load

Same as Previous Page, but with $R_{1} \| R_{3}$ and $R_{2} \| R_{4}$
Top Source
$v_{1}=v_{s} \frac{R_{1} \| R_{3}}{\left(R_{1} \| R_{3}\right)+\left(R_{0}\left\|R_{2}\right\| R_{4}\right)}$

$$
v_{2}=v_{s} \frac{R_{0}\left\|R_{2}\right\| R_{4}}{\left(R_{1} \| R_{3}\right)+\left(R_{0}\left\|R_{2}\right\| R_{4}\right)}
$$

Bottom Source
$v_{1}=-v_{s} \frac{R_{1}\left\|R_{3}\right\| R_{0}}{\left(R_{2} \| R_{4}\right)+\left(R_{0}\left\|R_{1}\right\| R_{3}\right)}$
Total

$$
v_{2}=-v_{s} \frac{R_{2} \| R_{4}}{\left(R_{2} \| R_{4}\right)+\left(R_{0}\left\|R_{1}\right\| R_{3}\right)}
$$

$$
\begin{array}{ccc}
v_{1}=101.4 \mathrm{~V} & v_{2}=138.6 \mathrm{~V} & \text { Check } v_{1}+v_{2}=240 \mathrm{~V} \\
v_{A}=120 \mathrm{~V} & v_{B}=-120 \mathrm{~V} & v_{0}=v_{A}-v_{1}=18.6 \mathrm{~V}
\end{array}
$$

Comparison

Stove Off

$$
\begin{array}{ll}
v_{1}=60.7 \mathrm{~V} & v_{2}=179.3 \mathrm{~V} \\
v_{A}=120 \mathrm{~V} & v_{B}=-120 \mathrm{~V}
\end{array} \quad v_{0}=v_{A}-v_{1}=59.3 \mathrm{~V}
$$

Lights Represented by R_{1} Are Dim
Lights Represented by R_{2} Are Too Bright
Stove On

$$
\begin{array}{ll}
v_{1}=101.4 \mathrm{~V} & v_{2}=138.6 \mathrm{~V} \\
v_{A}=120 \mathrm{~V} & v_{B}=-120 \mathrm{~V}
\end{array}
$$

Lights Represented by R_{1} Become Brighter Lights Represented by R_{2} Become Dimmer
Better Balance
"Ground" Voltage, v_{0}, Closer to Zero

Wheatstone Bridge

Balancing the Bridge

$$
\begin{gathered}
v_{A}=v_{s} \frac{R_{2}}{R_{1}+R_{2}} \\
v_{B}=v_{s} \frac{R_{3}}{R_{3}+R_{4}} \\
v_{B A}=v_{s}\left(\frac{R_{2}}{R_{1}+R_{2}}-\frac{R_{3}}{R_{3}+R_{4}}\right)
\end{gathered}
$$

Application:

- R_{4} is Unknown
- R_{2} is Variable and Calibrated
- R_{1} and R_{3} are Precision Resistors
- Adjust for $v_{B A}=0$
- Solve for R_{4}

Strain Gauge

- R_{4} is a Strain Guage
- $R_{4}=R_{0}+\Delta R$
- $R_{1: 3}=R_{0}$ Precision Resistors
- Calculate $v_{A B}$

$$
\begin{gathered}
v_{B A}=v_{s}\left(\frac{R_{0}}{2 R_{0}}-\frac{R_{0}+\Delta R}{2 R_{0}+\Delta R}\right) \\
v_{B A}=v_{s}\left(\frac{1}{2}-\frac{R_{0}+\Delta R}{2 R_{0}+\Delta R}\right) \\
v_{B A} \approx v_{s}\left(\frac{1}{2}-\frac{R_{0}+\Delta R}{2 R_{0}}\right) \\
v_{B A} \approx-v_{s} \frac{\Delta R}{2 R_{0}}
\end{gathered}
$$

4 Balanced Strain Gauges

- $R_{1}=R_{4}=R_{0}+\Delta R$ Are Strain Guage
- $R_{2}=R_{3}=R_{0}+\Delta R$ Measure Opposite Strain
- Calculate $v_{A B}$

$$
\begin{gathered}
v_{B A}=v_{s}\left(\frac{R_{0}+\Delta R}{2 R_{0}}-\frac{R_{0}-\Delta R}{2 R_{0}}\right) \\
v_{B A}=v_{s} \frac{2 \Delta R}{2 R_{0}} \\
v_{B A}=v_{s} \frac{\Delta R}{R_{0}}
\end{gathered}
$$

May Need a Variable to Get a Good Null

In-Class Exercise (1)

In-Class Exercise (2)

$$
\begin{aligned}
R_{1}=1 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega, R_{3} & =10 \mathrm{M} \Omega, R_{4}=10 \Omega, R_{5}=50 \Omega, \\
A & =10^{5} .
\end{aligned}
$$

- Let $v_{i n}=1$
- Solve Symbolically for v_{A}, v_{B}, v_{C} with output open and shorted.
- Draw and label the Thévenin equivalent circuit for the output.
- What is the input resistance?
- Simplify the symbolic solution for the case where $R_{3} \rightarrow \infty$ and $A \rightarrow \infty$.
- Next week we will see why this circuit is important.

Symbolic Solution

$$
\begin{gathered}
\frac{v_{i n}-v_{A}}{R_{1}}+\frac{v_{C}-v_{A}}{R_{2}}+\frac{v_{B}-v_{A}}{R_{3}}=0 \\
v_{A}-v_{B}=v_{A} \frac{R_{3}}{R_{3}+R_{4}} \quad v_{C}=A\left(v_{B}-v_{A}\right)=-v_{A} A \frac{R_{3}}{R_{3}+R_{4}} \\
\frac{v_{i n}-v_{A}}{R_{1}}+\frac{-v_{A} A \frac{R_{3}}{R_{3}+R_{4}}-v_{A}}{R_{2}}+\frac{-v_{A}}{R_{3}+R_{4}}=0 \\
{\left[\frac{-1}{R_{1}}+\frac{-A \frac{R_{3}}{R_{3}+R_{4}}-1}{R_{2}}+\frac{-1}{R_{3}+R_{4}}\right] v_{A}=\frac{-v_{i n}}{R_{1}}} \\
v_{A}=v_{i n} \times \frac{1}{1+R_{1} \frac{A \frac{R_{3}}{R_{3}+R_{4}}+1}{R_{2}}+R_{1} \frac{1}{R_{3}+R_{4}}}
\end{gathered}
$$

Numerical Solution

$$
\begin{gathered}
v_{A}=9.9989 \times 10^{-5} \approx 0 \\
v_{B}=v_{A} \frac{R_{3}}{R_{3}+R_{4}}=9.9989 \times 10^{-11} \approx 0 \\
v_{C}=-v_{A} A \frac{R_{3}}{R_{3}+R_{4}}=-9.9989 \\
v_{C} \approx-\frac{R_{2}}{R_{1}} v_{i n} \quad \text { (Interesting?) } \\
R_{o u t}=R_{5}=50 \Omega \quad \text { because } \quad i_{s c}=v_{o c} / R_{5} \\
R_{i n}=R_{1}=1 \mathrm{k} \Omega \quad \text { because } \quad v_{A} \approx 0
\end{gathered}
$$

Approximate Solution

- Let

$$
R_{3} \rightarrow \infty \quad A \rightarrow \infty
$$

- Exact Equation

$$
v_{C}=-A \frac{R_{3}}{R_{3}+R_{4}} v_{i n} \times \frac{1}{1+R_{1} \frac{A_{R_{3}+R_{4}}^{R_{2}}+1}{R_{2}}+\frac{R_{1}}{R_{3}+R_{4}}}
$$

- Approximation

$$
v_{C} \approx-A \frac{R_{3}}{R_{3}+R_{4}} v_{i n} \times \frac{1}{0+R_{1} \frac{A \frac{R_{3}}{R_{3}+R_{4}}+0}{R_{2}}+0}=v_{i n} \frac{-R_{1}}{R_{2}}
$$

Using Thévenin Circuits

- Source: Thévenin Source, $v_{s}=1 \mathrm{mV} \cos \omega t$, with $R_{T}=150 \Omega$
- First Amplifier: Voltage Gain of $10,50 \Omega$ in and out, designed for 50Ω circuits.
- Second Amplifier: Voltage Gain of $20,50 \Omega$ in and out, designed for 50Ω circuits.
- Measurement device: Your oscilloscope.
- What is the measured voltage?

Solution: First Amplifier

Gain of 10 with 50Ω resistances.

Solution

- First amplifier mismatch going in; $\frac{50}{200}=\frac{1}{4}$
- Amplifiers $10 * 20=200$
- But v_{T} of final amplifier is $40 \times$ input to produce gain of 20 into 50Ω but scope is $1 \mathrm{M} \Omega$. Actual gain is 40 instead of 20 .
- Total gain $\frac{1}{4} \times 10 \times 40=100$
- Output 0.1V $\cos \omega t$
- $0.2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$

Solution (2)

