Circuits and Signals: Biomedical Applications Week 2

Charles A. DiMarzio
EECE-2150
Northeastern University

Sep 2023

Week 2 Agenda

- Better Source Models
- Kirchoff's Current Law
- Kirchoff's Voltage Law
- Resistors in Series
- Resistors in Parallel
- AC Circuits
- Diodes, Briefly

Models

All Models Are Approximations

- The Earth is Flat
- The Earth is a Sphere
- The Earth is Very Complicated
- Sources: Perfect Voltage or Current Sources
- Conductors: $R=0$

What if a 5-amp source is connected to an infinite resistance?

Contradictory Circuits

Why doesn't this work? How can we fix it?
Our models are too simple.

Better Current Source Model

Parallel Source Resistance

Better Voltage Source Model

Series Source Resistance

More Realistic Sources

Terminal Characteristics of Current (blue) and Voltage (red) Sources

What is the characteristic curve for your power supply? Why?

Now We Can Solve It

And Later We Will (But this is a Terrible Idea)

Aside: Switching Voltage

Which is Better? Why?

Aside: Switching Current

Which is Better? Why? Important for Laser Diodes

KVL, KCL: Simple Cases

- Simple KCL Examples
- Simple KVL Examples

- Series and Parallel Circuits
- Voltage and Current Dividers (Next Week)
- General Case (Next Week)

Can You Do These Now?

Nodes and Loops

Where are the Nodes and Loops?
Where are the Essential Nodes?
ABCDE

Remember Kirchoff's Current Law (KCL)

Conservation of Electrons

$$
\sum i_{n}=0
$$

Kirchoff's Current Law

$$
i_{1}=1_{2}+i_{3}: \text { Solve for } V_{A}
$$

Remember Kirchoff's Voltage Law (KVL)

Conservation of Energy

$$
\sum v_{n}=0
$$

Kirchoff's Voltage Law

$$
v_{s}-i R_{s}-i R_{1}-i R_{2}=0: \text { Solve for } i
$$

Use KCL and KVL

Draw the Circuit Using Symbols

Car Headlights Circuit

Resistors in Series (1)

New Concept: Series and Parallel

$$
\begin{aligned}
V & =V_{1}+V_{2}+V_{3} \quad \mathrm{KVL} \\
\frac{V}{i} & =\frac{V_{1}}{i}+\frac{V_{2}}{i}+\frac{V_{3}}{i} \\
R & =R_{1}+R_{2}+R_{3}
\end{aligned}
$$

Resistors in Series (2)

Resistors in Series: Examples

Two $1 \mathrm{k} \Omega$ Resistors in Series

$$
\begin{gathered}
R=R_{1}+R_{2} \\
R=2 R_{1} \\
R=2 \mathrm{k} \Omega
\end{gathered}
$$

One Large Resistor and One Much Smaller

$$
\begin{gathered}
R=R_{1}+R_{2} \\
R \approx \operatorname{Max}\left(R_{n}\right)
\end{gathered}
$$

$$
\text { For Example } R_{2}=R_{1} / 10 \quad R=1.1 R_{1} \quad \text { (10\% error) }
$$

Resistors in Parallel (1)

$$
\begin{aligned}
i & =i_{1}+i_{2}+i_{3} \quad \mathrm{KCL} \\
\frac{i}{V} & =\frac{i_{1}}{V}+\frac{i_{2}}{V}+\frac{i_{3}}{V} \\
\frac{1}{R} & =\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
\end{aligned}
$$

Resistors in Parallel (2)

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

Parallel-Resistor Equations

$$
\begin{aligned}
R & =R_{1} \| R_{2} \\
\frac{1}{R} & =\frac{1}{R_{1}}+\frac{1}{R_{2}} \\
R & =\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}} \\
R & =\frac{R_{1} R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

Conductances Add

$$
G=G_{1}+G_{2}
$$

Resistors in Parallel: Example

Two 1k Ω Resistors in Parallel

$$
\begin{gathered}
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\
R=\frac{R_{1}}{2} \\
R=500 \Omega
\end{gathered}
$$

One Large Resistor and One Much Smaller

$$
\begin{aligned}
& \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\
& R \approx \operatorname{Min}\left(R_{n}\right)
\end{aligned}
$$

$$
\text { For Example } R_{2}=R_{1} / 10 \quad R=0.91 R_{1} \quad \text { (10\% error) }
$$

Example: Ladder Network

Infinite Network: Equivalent Resistor? ($R_{1}=R_{2}=R_{3}=50 \Omega$) Assume the Answer is R
Add One More Link

$$
\begin{gathered}
R=R_{1}+\left(R_{2} \| R\right)+R_{3} \\
R=R_{1}+\frac{R_{2} R}{R_{2}+R}+R_{3} \\
R\left(R_{2}+R\right)=R_{1}\left(R_{2}+R\right)+R_{2} R+R_{3}\left(R_{2}+R\right) \\
R\left(R_{2}+R-R_{1}-R_{2}-R_{3}\right)=R_{1} R_{2}+R_{3} R_{2}
\end{gathered}
$$

Ladder Solution

Previous Page

$$
\begin{gathered}
R\left(R_{2}+R-R_{1}-R_{2}-R_{3}\right)=R_{1} R_{2}+R_{3} R_{2} \\
R^{2}-R\left(R_{1}+R_{3}\right)-R_{1} R_{2}+R_{3} R_{2}=0
\end{gathered}
$$

Possible Solutions

$$
R=\frac{\left(R_{1}+R_{3}\right) \pm \sqrt{\left(R_{1}+R_{3}\right)^{2}+4 R_{2}\left(R_{1}+R_{3}\right)}}{2}
$$

For All 50Ω Resistors, $R=137 \Omega$ (Failed Solution, $R=-37 \Omega$)

Power Issues

What Resistors to Use?
$R=1000$, All Resistors Equal

$$
R_{1: 4}=?
$$

What is the Power in Each Resistor as a Fraction of the Total?

$$
\frac{P_{n}}{P_{\text {total }}}=?
$$

What if I leave out the vertical wire in the middle?

Equivalent Resistance (1)

$$
\begin{gathered}
{\left[R_{1}+R_{6}\right] \|\left[R_{2}+R_{3}+\left(R_{4} \| R_{5}\right)\right]} \\
R_{n}=50 \Omega \quad \text { All } n \\
R=[50+50] \|[50+50+25]
\end{gathered}
$$

$$
R=55.6 \Omega
$$

Equivalent Resistance (2)

$$
\begin{gathered}
{\left[R_{1} \|\left(R_{2}+R_{3}\right)\right]+\left[R_{4}\left\|R_{5}\right\| R_{6}\right]} \\
R_{n}=50 \Omega \quad \text { All } n \\
R=[50 \|(100)]+[50 / 3] \\
R=50 \Omega
\end{gathered}
$$

Series and Parallel

Series

- Voltage Sources Add
- Current Sources Fail
- Resistors Add

Parallel

- Voltage Sources Fail
- Current Sources Add
- Resistors Add Inverses

How can I prevent the failures?

Measuring Voltage and Current

- Voltage Across Something
- Meter Resistance High
- Current Through Something
- Meter Resistance Low
- Break Circuit for Current Measurement

AC Circuits: Sine Waves

$p=i v$, Voltage in Blue, Current in Green, Power in Red Power at Twice the Operating Frequency

Another Cup of Coffee: RMS Voltage (or Current)

$$
\begin{aligned}
& p(t)=i(t) v(t) \quad p(t)=\frac{v^{2}(t)}{R} \\
& v(t)=v_{0} \cos (2 \pi f t) \quad v_{0}=311 \mathrm{Volts} \quad f=50 \mathrm{~Hz} \\
& v^{2}(t)=\left[v_{0} \cos (2 \pi f t)\right]^{2} \quad \frac{v^{2}(t)}{R}=\frac{v_{0}^{2}\left[\frac{1}{2}+\frac{1}{2} \cos (4 \pi f t)\right]}{R} \\
& \bar{P}=\frac{\overline{v_{0}^{2}}}{2 R}=\frac{v_{R M S}^{2}}{R}=1000 \text { Watts } \\
& \text { Comparable to the Previous Cup (1kW): See Next Slide } \\
& \text { RMS Voltage Defined: }
\end{aligned}
$$

$$
v_{R M S}=\frac{v_{0}}{\sqrt{2}}=\frac{v_{p p}}{2 \sqrt{2}}=220 \mathrm{~V}
$$

This problem was based on power in Europe or South America. How would it be different in North America?

The First Cup of Coffee

- Energy: Pt (Watts \times Sec $=$ Joules)
- Heat a Cup of Water $T_{0}=20 \mathrm{C}$ to $T_{1}=60 \mathrm{C}$ (250m $\left.\ell\right)$
- Energy Required 4.18J/K/m
- 1kW Heater

$$
\begin{gathered}
P t=4.18 \mathrm{~J} / \mathrm{K} / \mathrm{m} \ell \times 250 \mathrm{~m} \ell \times(60 C-20 C) \\
t=42 \mathrm{~s} \quad R=45 \Omega
\end{gathered}
$$

RMS Voltage

What Is the Peak-to-Peak Voltage, Zero-to-Peak, RMS

Voltage Measurements

- $v(t)=v_{0} \sin 2 \pi f t$ Convenient for Theory
- Peak-to-Peak $v_{p p}=2 v_{0}$ Easy on an Oscilloscope
- Root-Mean-Square (RMS) $v_{r m s}=\frac{v_{0}}{\sqrt{2}}$ Multi-Meter
- Instantaneous power $P(t)=i(t) v(t)$
- Average power $P_{a v}=i_{r m s} v_{r m s}$

Frequency Question

In the lab, you will build an ECG Instrument that is measures voltages.

Wire acts as an antenna. You will see signals from the power wires.

What will be the frequency of those signals ...

- In the US?
- In Europe?
- In Your Home Country?

Diodes, Briefly

- Diodes are Pretty Good Conductors One Way
- Diodes are Pretty Good Insulators the Other Way
- Light Emitting Diodes Emit Light When they Conduct
- They are Nonlinear
- There are Several Piecewise-Linear Approximations
- The Details Can Get Messy

