EECE 2150 - Circuits and Signals: Biomedical Applications Fall 2022 Quiz 9

Prof. Charles A. DiMarzio

10 November 2022

Student Name:
In the figure, $R_1 = 2 \mathrm{k}\Omega$ and $R_2 = 20 \mathrm{k}\Omega$. We want to block power–line frequencies and we choose the cutoff frequency to be $f_c = 200 \mathrm{Hz}$.
1. What type of filter is this?
□ Low Pass □ High Pass □ Band Pass □ Band Stop
2. What is the value of the capacitor?
C =
3. What is the magnitude of the gain in dB at $f = 60 \text{ Hz}$?
H(60) =
4. What is the magnitude of the gain in dB at $f = 1 \text{kHz}$?
H(1000) =
5. What is the magnitude of the gain in dB at very high frequencies?
$H(\infty) = \underline{\qquad} .$

Solutions

1. What type of filter is this?

Low Pass	X High Pass	\Box Band Pass	\Box Band Stop	
2. What is the value of the capacitor?				
$a = 2\pi f P$	$C = \tau = 1/\tau$	100 nF		
$\omega_c = 2\pi f_c, \ n_1 C = r = 1/\omega_c, \ C = 400 \ \text{m}^2$				
5. What is the magnitude of the gain in dD at $f = 00 \text{ Hz}$:				

$$Z_1 = \frac{1}{j2\pi fC} + R_1$$
. $H(60) = 20 \log_{10} |R_2/Z_1| = 9.2 \,\mathrm{dB}$

- 4. What is the magnitude of the gain in dB at $f = 1 \,\text{kHz}$?
- $H(1000) = 19.8 \,\mathrm{dB}$
- 5. What is the magnitude of the gain in dB at very high frequencies?

 $H(\infty) = 20 \log_{10} |R_2/R_1| = 20.02 \,\mathrm{dB}$