EECE 2150 - Circuits and Signals: Biomedical Applications Fall 2022 Quiz 7

Prof. Charles A. DiMarzio

26 October 2023

Student Name: \qquad
The ampifier circuit in the figure is intended to take the derivative of the input voltage, $v_{i n}$. The capacitor $C=1 \mu \mathrm{~F}, R_{1} \approx 0$, and $R_{2}=2 \mathrm{k} \Omega$. The amplifier has power supply rails at $\pm 12 \mathrm{~V}$.

1. Write the current, $i_{1}(t)$ as a function of $v_{i n}(t)$.
\qquad .
2. What is the current, i_{2} as a function of $v_{i n}(t)$.
\qquad .
3. What is $v_{\text {out }}$ as a function of $v_{i n}(t)$.
\qquad .
4. What is the "gain?" Be careful here, because by "gain" I mean the ratio of $v_{\text {out }}$ to $\frac{d v_{\text {in }}}{d t}$. This gain has units. Be sure to include them in the answer.
5. If the input is a pulse such that $v_{i n}=1 \mathrm{~V}$ for $0<t<5 \mu \mathrm{~s}$, and zero for all other times, sketch the output.

6. $i_{1}=C \frac{d v_{1}}{d t}$
7. $i_{2}=C \frac{d v_{1}}{d t}$
8. $v_{\text {out }}=-R_{2} C \frac{d v_{1}}{d t}=-2 \times 10^{-3} \mathrm{sec}$
9. Negative 12 volt spike at $t=0$ and positive at $t=5 \mu \mathrm{~s}$.
