EECE 2150 - Circuits and Signals: Biomedical Applications Fall 2023 Quiz 5

Prof. Charles A. DiMarzio

12 October 2023

Student Name:

The figure shows an amplifier circuit using an ideal op-amp, with the exception that the supply voltage rails are $\pm 9 \text{ V}$. The resistors are $R_1 = 2 \text{ k}\Omega$ and $R_2 = 30 \text{ k}\Omega$. The voltage source has $R_s \approx 0 \Omega$.

1. What is the gain of the amplifier?

2. If $v_s = 0.3 \text{ V}$, what is the output voltage?

3. If $v_s = 0.3 \,\mathrm{V} \times \cos 2\pi f t$ with $f = 1000 \,\mathrm{Hz}$, write an equation for the output voltage.

 $\square 5 \,\mu \text{sec/division} \,\square 500 \,\mu \text{sec/division} \,\square 500 \,\text{msec/division}$

^{4.} Now we change the input to $v_s = 1 \text{ V} \times \cos 2\pi f t$, keeping the frequency the same. To view this signal on the oscilloscope, select the best time base of the following three for the horizontal setting.

^{5.} We connect the input to Channel 1 of the oscilloscope with a setting of 100 mV/divison and the output to Channel 2 at 5 V/division. Sketch what we would see on the oscilloscope.

Solution

1. $-\frac{R_2}{R_1} = -15$ 2. $-15 \times v_s = -4.5 \,\mathrm{V}$ 3.

 $v_{out} = -4.5 \cos 2\pi f t.$

4. $500\,\mu{\rm sec}/{\rm division}.$ This gives us 2 divisions per cycle.

5.

