EECE 2150 - Circuits and Signals: Biomedical Applications Fall 2023
 Quiz 5

Prof. Charles A. DiMarzio

12 October 2023

Student Name:
The figure shows an amplifier circuit using an ideal op-amp, with the exception that the supply voltage rails are $\pm 9 \mathrm{~V}$. The resistors are $R_{1}=2 \mathrm{k} \Omega$ and $R_{2}=30 \mathrm{k} \Omega$. The voltage source has $R_{s} \approx 0 \Omega$.

1 . What is the gain of the amplifier?
2. If $v_{s}=0.3 \mathrm{~V}$, what is the output voltage?
3. If $v_{s}=0.3 \mathrm{~V} \times \cos 2 \pi f t$ with $f=1000 \mathrm{~Hz}$, write an equation for the output voltage.
4. Now we change the input to $v_{s}=1 \mathrm{~V} \times \cos 2 \pi f t$, keeping the frequency the same. To view this signal on the oscilloscope, select the best time base of the following three for the horizontal setting.
$\square 5 \mu \mathrm{sec} /$ division $\square 500 \mu \mathrm{sec} /$ division $\square 500 \mathrm{msec} /$ division
5. We connect the input to Channel 1 of the oscilloscope with a setting of 100 mV /divison and the output to Channel 2 at $5 \mathrm{~V} /$ division. Sketch what we would see on the oscilloscope.

Solution

1.

$$
-\frac{R_{2}}{R_{1}}=-15
$$

2.

$$
-15 \times v_{s}=-4.5 \mathrm{~V}
$$

3.

$$
v_{o u t}=-4.5 \cos 2 \pi f t
$$

4. $500 \mu \mathrm{sec} /$ division. This gives us 2 divisions per cycle.
5.

