EECE 2150 - Electrical Engineering Fall 2023 Quiz 4

Prof. Charles A. DiMarzio

5 October 2023

Student Name: _

In class a while back, we talked about a variable resistor (potentiometer) used for a volume control. Let's look at whether such a device changes the output resistance. See the circuit in the figure. R_1 and R_2 are the two parts of the volume control, and $R_1 + R_2 = R_{total} = 10 \,\mathrm{k}\Omega$ remains constant. Let's consider two cases where we set the volume to 90% and then to 50%. That is, $R_2 = 0.90R_{total}$ in the first case and $R_2 = 0.50 R_{total}$ in the second, and in each case, compute the Thévenin equivalent circuit. The source voltage is 100 mV.

I suggest that you calculate the open-circuit voltage, short-circuit current, and resistance independently. Then you can check your answers.

1. What are the Thévenin voltages?

 $V_T(90\%) =$ _____ and $V_T(50\%) =$ _____

2. What are the Thévenin resistances?

 $R_T(90\%) =$ _____ and $R_T(50\%) =$ _____

3. What are the short–circuit currents?

 $i_{sc}(90\%) =$ ______ and $i_{sc}(50\%) =$ ______

Solution

1. $V_T = V_{oc} = V_S \frac{R_2}{R_1 + R_2}$ 90 mV and 50 mV

2. $R_T = R_1 \parallel R_2$ $R_2(90\%) = 9 \,\mathrm{k}\Omega$ and $R_2(50\%) = 5 \,\mathrm{k}\Omega$ $R_T(90\%) = 900\Omega$ and $R_T(50\%) = 2500\Omega$

3. $i_{sc} = V_T / R_T$ $i_{sc}(90\%) = 100 \,\mu\text{A}$ and $i_{sc}(50\%) = 200 \,\text{mA}$