EECE 2150 - Electrical Engineering Fall 2023 Quiz 3

Prof. Charles A. DiMarzio

28 September 2023

Student Name:
The figure shows a circuit with some sources and resistors, with letters for potential nodes. In this circuit, $V_{S}=10 \mathrm{~V}, i_{s}=10 \mathrm{~mA}, R_{1}=1 \mathrm{k} \Omega, R_{2}=5 \mathrm{k} \Omega, R_{3}=1 \mathrm{k} \Omega$, and $R_{4}=2500$ Omega.

1. Which of the letters label the same node?
2. Which letter(s) label essential node(s)?
3. Write the node equation(s) symbolically.
4. Solve the equations numerically.
5. What are these voltages?
$V_{B}=$ \qquad , $V_{C}=$ \qquad , $V_{A}=$ \qquad

Solution

1. Which of the letters label the same node?

E, F, G
2. Which letter(s) label essential node(s)?

B
3. Write the node equation(s) symbolically with the unknown(s) on the left.

$$
\begin{gathered}
\frac{v_{s}-V_{B}}{R_{2}}+i_{s}+\frac{0-V_{B}}{R_{3}+R_{4}}=0 \\
\left(\frac{1}{R_{2}}+\frac{1}{R_{3}+R_{4}}\right) v_{B}=\frac{V_{s}}{R_{2}}+i_{s}
\end{gathered}
$$

4. Solve the equations numerically.

$$
\begin{gathered}
\left(\frac{1}{5000 \Omega}+\frac{1}{3500 \Omega}\right) v_{B}=\frac{10 \mathrm{~V}}{5000 \Omega}+0.01 \mathrm{~A} \\
0.00048 \Omega^{-1} v_{B}=0.001 \mathrm{~A}+0.01 \mathrm{~A} \\
v_{B}=24.6 \mathrm{~V} .
\end{gathered}
$$

5. What are these voltages?
$V_{B}=24.6 \mathrm{~V}$.
$V_{C}=v_{B} \frac{R_{4}}{R_{3}+R_{4}}=17.6 \mathrm{~V}$,
$V_{A}=V_{B}+i_{s} R_{1}=34.6 \mathrm{~V}$ (Yes, it is true that $v_{A} v_{s}$).
