Complex Numbers Homework (\#6)
C. DiMarzio, Northeastern University
EECE2150, Fall 2023
Revision 1, 6:30 pm Sunday 15 Oct

1. Calculate the sum $(4+3 j)+(3+4 j)$. Convert to polar form.

2a. Calculate the product, $(4+3 j)(3+4 j)$. Do this in rectangular form.
2b. Convert both numbers to polar form and compute the product. Do your answers agree?

Write the following in rectangular form.
3. $10 \sqrt{2} \angle \pi / 6$.
4. $e^{3+j \pi / 4}$.
5. j^{282}.
6. j^{2016}.

Write the following in polar form.
7. \sqrt{j}.
8. 13 Ohms $+j 20$ Ohms.
9. $(3+2 j) e^{j \pi / 2}$.
10. $j(3+2 j)$.

Compute the complex conjugate in the same form as the given expression.
11. $7 \angle \pi / 3$
12. $4+3 j$
13. $36 e^{j \pi / 4}$

14a. Write the voltage as a function of time for the complex representation $15 \mathrm{~V} e^{p i / 4}$ at $f=440 \mathrm{~Hz}$.

14b. Write the complex representation of $V=20 \mathrm{~V} \cos \omega t+22$ degrees. This is kind of a trick question. Remember the exponential notation uses radians.
15. Your goal is to digitize the elevation measured by an altimeter you
are carrying on a hike. Assume that you are in really great shape and can tackle any mountain on Earth (The highest mountain is 8849 meters). You want to collect the data with a step size of 2 meters.
a. How many bits do you need in your digital-to-analog converter?
b. Suppose that the device produces a voltage of zero at sea level and 1 volt at an elevation of 10 km . Your converter expects an input of -5 to 5 Volts. What circuit do you need between your altimeter and your converter? There is more than one right answer.
c. Assuming that the signal is noise-free, what is the maximum error in your data?

