EECE 2150 - Circuits and Signals: Biomedical Applications Fall 2018, Quiz 7

Prof. Charles A. DiMarzio

1 November 2018

Student Name: \qquad
Consider the circuit in the figure.

1. Write the equation for the amplifier gain in simplest rectangular form.
$A_{v}=$ \qquad $+\mathrm{j}$ \qquad
2. Now, use the values, $R=1 \mathrm{k} \Omega$ and $C=10 \mu \mathrm{~F}$. The phase is -45° at a frequency of 10 kHz . That is, the real and imaginary parts of A_{v} are equal at that frequency. What is the value of the inductor?
$L=$ \qquad H.
3. What is the DC gain $(f=0)$?
$A_{v}=$ \qquad .
4. What is the gain at $f=1 \mathrm{MHz}$? Express it in polar coordinates with the angle in degrees.
\qquad \angle \qquad

5.

$$
\begin{gathered}
A_{V}=-\frac{R+j \omega L}{1 /(j \omega C)} \\
A_{V}=-j \omega C \times R-j \omega C \times j \omega L \\
A_{V}=\omega^{2} L C-j \omega R C
\end{gathered}
$$

2.

$$
\begin{gathered}
\omega^{2} L C=\omega R C \\
L=\frac{R}{\omega} \\
L=\frac{1000 \Omega}{2 \pi 10^{4} \mathrm{~Hz}}=15.9 \mathrm{mH} .
\end{gathered}
$$

3.

$$
Z_{1} \rightarrow \infty \quad A_{v}=0
$$

4.

$$
\begin{gathered}
A_{V}=\omega^{2} L C-j \omega R C \\
A_{V}=\left(2 \pi 10^{12} \mathrm{~Hz}\right)^{2} \times 0.0159 \mathrm{H} \times 10^{-5} \mathrm{~F}-j 2 \pi 10^{6} \mathrm{~Hz} \times 1000 \Omega \times 10^{-5} \mathrm{~F} \\
A_{v}=6.28 \times 10^{6}-j 6.28 \times 10^{4} \\
\left|A_{v}\right|=6.28 \times 10^{6} \quad \phi=-0.57^{\circ}
\end{gathered}
$$

To a good approximation, the gain is real.

