EECE 2150 - Circuits and Signals: Biomedical Applications Fall 2018 - Section 3 Quiz 5

Prof. Charles A. DiMarzio

18 October 2018

Student Name: \qquad

$$
z_{1}=5 \angle 30^{\circ} \quad z_{2}=5 \angle 60^{\circ}
$$

1 . What is the sum of z_{1} and z_{2} ?
Rectangular form: $z_{1}+z_{2}=$ \qquad

Polar form: $z_{1}+z_{2}=$ \qquad
2. What is the product of z_{1} and z_{2} ?

Polar form only: $z_{1} z_{2}=$ \qquad
3. What is the sum of z_{1} and its complex conjugate?
$z_{1}+z_{1}^{*}=$ \qquad
4. What is the product of z_{1} and the complex conjugate of z_{2} ?
$z_{1} z_{2}^{*}=$ \qquad
5. A signal is expressed by its complex voltage, $V=2$ Volts $\times e^{j 2 \pi f t}$. The real signal is $V+V^{*}$. This voltage is applied across a resistor, R. What is equation for the power as a function of time? Hint: use $P=V^{2} / R$.

$$
P(t)=
$$

$$
z_{1}=5 \angle 30^{\circ} \quad z_{2}=5 \angle 60^{\circ}
$$

1.

$$
\begin{gathered}
z_{1}+z_{2}=5 \cos (30 \mathrm{deg})+j 5 \sin (30 \mathrm{deg})+5 \cos (60 \mathrm{deg})+j 5 \sin (60 \mathrm{deg}) \\
=5 \cos (30 \mathrm{deg})+j 5 \sin (30 \mathrm{deg})+5 \sin (30 \mathrm{deg})+j 5 \cos (30 \mathrm{deg}) \\
=6.83+j 6.83 \\
=6.83 \times \sqrt{2} \angle 45 \mathrm{deg}=9.66 \angle 45 \mathrm{deg}
\end{gathered}
$$

2.

$$
z_{1} z_{2}=5 \times 5 \angle(30+60)^{\circ}=25 j
$$

3.

$$
\begin{gathered}
z_{1}+z_{1}^{*}=5 \cos (30 \mathrm{deg})+j 5 \sin (30 \mathrm{deg})+5 \cos (30 \mathrm{deg})-j 5 \sin (30 \mathrm{deg})= \\
10 \cos (30 \mathrm{deg}) .
\end{gathered}
$$

4.

$$
5 \angle 30^{\circ} \times 5 \angle-60^{\circ}=5 \times 5 \angle(30-60) \operatorname{deg}=25 \angle-30^{\circ}
$$

5.

$$
\begin{gathered}
v^{2}=\left(2 \text { Volts } \times e^{j 2 \pi f t}+2 \text { Volts } \times e^{-j 2 \pi f t}\right) \times \\
\left(2 \text { Volts } \times e^{j 2 \pi f t}+2 \text { Volts } \times e^{-j 2 \pi f t}\right)= \\
8 \text { Volts }^{2} \times e^{j 2 \pi f t} \times e^{-j 2 \pi f t}+ \\
4 \text { Volts }^{2} \times e^{j 2 \pi f t} \times e^{j 2 \pi f t}+4 \text { Volts }^{2} \times e^{-j 2 \pi f t} \times e^{-j 2 \pi f t}=
\end{gathered}
$$

$$
8 \text { Volts }^{2}+4 \text { Volts }^{2} \times e^{j 4 \pi f t}+4 \text { Volts }^{2} \times e^{-j 4 \pi f t}=
$$

$$
8 \text { Volts }^{2}+\text { Volts }^{2} \cos 4 \pi f t
$$

