EECE 2150 - Circuits and Signals: Biomedical Applications Fall 2018 - Section 3 Quiz 4

Prof. Charles A. DiMarzio

4 October 2018

Student Name: \qquad
The circuit shown is an inverting amplifier, with $R_{1}=2 \mathrm{k} \Omega, R_{2}=12 \mathrm{k} \Omega, R_{3}=$ $2 \mathrm{k} \Omega, R_{L}=10 \mathrm{k} \Omega$

1. What is the voltage gain of the amplifier?
\qquad
2. If we connect an ideal voltage source, $V_{i n}=100 \mathrm{mV}$, to the input, what is the current from that source. Assume positive current is from left to right in R_{1}.
3. How much power is produced by the source?
4. For the same input, what is the output voltage?
5. How much power is absorbed by the load?
\qquad

6.

$$
A_{V}=-\frac{R_{2}}{R_{1}}=-\frac{12 \mathrm{k} \Omega}{2 \mathrm{k} \Omega}=-6
$$

2.

$$
i=\frac{V_{i n}-0}{R_{1}}=100 \mathrm{mV} 2 \mathrm{k} \Omega=50 \mu \mathrm{~A} .
$$

Note that R_{3} doesn't matter. No current flows in it so $V_{+}=0$.
3.

$$
P=i V=50 \mu \mathrm{~A} \times 100 \mathrm{mV}=5 \mu \mathrm{~W}
$$

4.

$$
V_{\text {out }}=A_{V} V_{\text {in }}=-6 \times 100 \mathrm{mV}=-600 \mathrm{mV}
$$

5.

$$
P=\frac{V^{2}}{R_{L}}=\frac{(-600 \mathrm{mV})^{2}}{10 \mathrm{k} \Omega}=36 \mu \mathrm{~W}
$$

