EECE 2150 - Circuits and Signals: Biomedical Applications Fall 2018 Quiz 2

Prof. Charles A. DiMarzio

20 September 2018

Student Name:
Consider the circuit shown in the figure.

$$
\begin{array}{cc}
R_{1}=10 \mathrm{kOhms} & R_{2}=R_{1} \\
R_{3}=2 \mathrm{kOhms} & R_{4}=5 \mathrm{kOhms} \\
g=40 \mu \mathrm{~A} / \mathrm{V} & V_{s}=10 \mathrm{~V}
\end{array}
$$

1. Write two node equations for the unknown voltages V_{1} and V_{2}.
\qquad
\qquad
2. Simplify the equations.
\qquad
3. Convert the equations to matrix form, $\mathcal{M} \mathbf{x}=\mathbf{y}$

You do not need to solve the matrix equation for \mathbf{x}.

1.

$$
\begin{gathered}
-\frac{V_{s}-V_{1} \mid}{R_{1}}+\frac{V_{1}}{R_{2}}+\frac{V_{1}-V_{2}}{R_{3}}=0 \\
-g V_{1}+\frac{V_{2}}{R_{4}}+\frac{V_{2}-V_{1}}{R_{3}}=0
\end{gathered}
$$

2.

$$
\begin{aligned}
\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right) V_{1}+\left(\frac{-1}{R_{3}}\right) V_{2} & =\frac{V_{s}}{R_{1}} \\
\left(-g-\frac{1}{R_{3}}\right) V_{1}+\left(\frac{1}{R_{4}}+\frac{1}{R_{3}}\right) V_{2} & =0
\end{aligned}
$$

3.

$$
\begin{gathered}
\left(\begin{array}{cc}
\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right) & \left(\frac{-1}{R_{3}}\right) \\
\left(-g-\frac{1}{R_{3}}\right) & \left(\frac{1}{R_{4}}+\frac{1}{R_{3}}\right)
\end{array}\right)\binom{V_{1}}{V_{2}}=\binom{\frac{V_{s}}{R_{1}}}{0} \\
\left(\begin{array}{cc}
0.7000 & -0.5000 \\
-0.5400 & 0.7000
\end{array}\right) \times 10^{-3} \times\binom{ V_{1}}{V_{2}}=\binom{3.1818}{2.4545}
\end{gathered}
$$

For your information, the solution is

$$
\binom{V_{1}}{V_{2}}=\binom{3.1818}{2.4545}
$$

