
EECE 2150 - Circuits and Signals: Biomedical
Applications

Lab 8
Getting started with Analog to Digital Conversion and Sampling

In this ALE we will use an Analog to Digital Converter (also called an A/D, ADC, or
DAQ) to get signals from the analog (“real”) world (continuous time and amplitude) onto
a computer (discrete in time and quantized in amplitude). The particular A/D device we
will use is made by National Instruments (NI) and can be controlled from within
MATLAB.

Part 1. Basic setup of the NI USB-DAQ

Figure 1. The NI USB-6001”Pinout” (see spec sheet online)

Figure 2. Connecting Wires to the DAQ.

1.0 Be sure to use the NI-DAQ which corresponds to the computer you are using, which
can be determined by the label written on the box. Specifically, one out of every pair of
computers is labeled as 1A, 2A, etc. The NI-DAQ with the corresponding label will work

on either computer in that pair but not on any other computers in the lab. So be sure to
grab the correct NI-DAQ box!

1.1 We can connect input signals into the NI-DAQ using wires with stripped ends. Insert
the wire end into the first Analog Input terminals “AI 0 + and -, also indicated as 0 and
4”. You will need to tighten the connectors “snuggly/gently” with a screwdriver. For
now, do not connect the other end of the wires to anything. (Note that the photo of the
NI-DAQ has the wires connected to ground and AI 0, which is not the connection we are
making in this lab)

1.2 Plug in the DAQ to your computer with the USB cable. You should see a blue light
on the top of the board. Open Matlab—IMPORTANT, USE MATLAB version 2015a, not
2014a. We will use a “session based DAQ interface” for this lab.

There is somewhat confusing documentation on the Matlab website which you can
review here:

http://www.mathworks.com/help/daq/examples/getting-started-with-session-based-
interface-using-ni-devices.html#responsive_offcanvas

http://www.mathworks.com/help/daq/acquire-data.html

1.3 In this lab we will go through the basic steps of setting up an acquisition (blue text
indicates what you type at the command line, purple text indicates the response from
Matlab).

First, you can see what DAQ devices are available by typing:

>> daq.getDevices

at the command line. If it is connected properly you will see something like the
following (after a pause of a few seconds). If not, stop and make sure everything is
hooked up correctly

ans =

ni: National Instruments USB-6001 (Device ID: 'Dev1')
 Analog input subsystem supports:
 -10 to +10 Volts range
 Rates from 0.1 to 20000.0 scans/sec
 8 channels ('ai0' - 'ai7')
 'Voltage' measurement type

 Analog output subsystem supports:
 -10 to +10 Volts range
 Rates from 0.1 to 5000.0 scans/sec

http://www.mathworks.com/help/daq/examples/getting-started-with-session-based-interface-using-ni-devices.html#responsive_offcanvas
http://www.mathworks.com/help/daq/examples/getting-started-with-session-based-interface-using-ni-devices.html#responsive_offcanvas
http://www.mathworks.com/help/daq/acquire-data.html

 2 channels ('ao0','ao1')
 'Voltage' measurement type

 Digital subsystem supports:
 13 channels ('port0/line0' - 'port2/line0')
 'InputOnly','OutputOnly','Bidirectional' measurement types

 Counter input subsystem supports:
 1 channel ('ctr0')
 'EdgeCount' measurement type

1.4 Next, we need to create a “DAQ session” by typing:

>> s = daq.createSession('ni')

Matlab will return something like the following:

s =

Data acquisition session using National Instruments hardware:
 Will run for 1 second (1000 scans) at 1000 scans/second.
 No channels have been added

1.5 Next, we need to add an analog data input channel. For this we use the
“addAnalogInputChannel” command. The inputs correspond to the DAQ session (s, see
1.4), the device name (Dev1, see 1.3), the input channel (ai0), and the measurement type
(Voltage):

>> ch = addAnalogInputChannel(s, 'Dev1', 'ai0', 'Voltage')

ch =

Data acquisition analog input voltage channel 'ai0' on device 'Dev1':

 Coupling: DC
 TerminalConfig: Differential
 Range: -10 to +10 Volts
 Name: ''
 ID: 'ai0'
 Device: [1x1 daq.ni.DeviceInfo]
MeasurementType: 'Voltage'

1.6 You can see more DAQ parameters by looking at the subsystems using:

>> sub = ch.Device.Subsystems

Matlab will return the following::

sub =

Analog input subsystem supports:
 -10 to +10 Volts range
 Rates from 0.1 to 20000.0 scans/sec
 8 channels ('ai0' - 'ai7')
 'Voltage' measurement type
Properties, Methods, Events

Analog output subsystem supports:
 -10 to +10 Volts range
 Rates from 0.1 to 5000.0 scans/sec
 2 channels ('ao0','ao1')
 'Voltage' measurement type
Properties, Methods, Events

Digital subsystem supports:
 13 channels ('port0/line0' - 'port2/line0')
 'InputOnly','OutputOnly','Bidirectional' measurement types
Properties, Methods, Events

Counter input subsystem supports:
 1 channel ('ctr0')
 'EdgeCount' measurement type
Properties, Methods, Events

Part 2. Inputting, acquiring, and plotting a test signal.

Figure 3. Connecting the Function Generator to the DAQ Board

2.1 Connect the function generator the USB-DAQ with a BNC to banana connector cable
and some alligator clips, similar to figure 3 above.

2.2 Now set up the function generator to generate an output wave as follows:

Sine wave, frequency 500 Hz, Amplitude 5V, DC Offset 0V, Output enabled (on).

Use your BNC “T” to observe the function generator signal on the oscilloscope while it is
also going into the A/D converter.

2.3 We can set up the parameters of our acquisition as follows.
Let’s assume we want a sampling frequency Fs of 10,000 Hz (samples per second), and
we want to acquire 0.01 s of data (100 samples).

We can do this by setting the DAQ input channel acquisition rate:

>> s.Rate = 10000

Matlab will return:

s.Rate =

 Rate: 10000

Also set the number of samples (which Matlab calls “Scans”):

>> s.NumberOfScans = 100

Matlab will return:

s.NumberOfScans =

Data acquisition session using National Instruments hardware:
 Will run for 100 scans (0.01 seconds) at 10000 scans/second.
 Number of channels: 1
 index Type Device Channel MeasurementType Range Name
 ----- ---- ------ ------- ------------------- ---------------- ----
 1 ai Dev1 ai0 Voltage (Differential) -10 to +10 Volts

2.4 Now we can acquire the data using the “startForeground” command as follows:

>>data = s.startForeground();

This will read 100 samples into the variable ‘data’ at a rate of 10000 samples / s. We can
check that this worked by plotting the data:

>>figure; plot(data, '.-')

which gives something like Figure 4 below.

Count the number of periods shown in your graph and determine whether this is correct.

Figure 4. Basic Acquired Data Trace

2.5 This graph is not professional because it is not properly labeled and does not have a
correct x-axis. As a refresher on how to do this, first, we should generate a proper “time
axis” (x-axis).

For the conditions above, the time step is 1/10000 samples /s = 0.0001 s. In general this
is:
>> dt = 1/s.Rate;

The time of the first sample is typically set either just “dt”, or 0.0001s, or to 0. We will
use the first option here for convenience.. The time corresponding to the last sample is
100*0.0001s = 0.01s. In general this is s.NumberOfScans*dt:
>> t_end = double(s.NumberOfScans)*dt;

Here we have had to use the function “double” to convert the integer value
s.NumberOfScans to a double precision value to perform the multiplication operation in
Matlab. So our time axes is:
>> time = [dt:dt:t_end];

We can now make a nicer plot, such as:
>> figure;
>>plot(time, data, 'r.-');
>>xlabel('Time (s)');
>>ylabel('Input Signal (V)');
>>title('500 Hz Sinewave, 5V Ampl, 0V DC Offset')

Here, xlabel, ylabel and title label the figure and axes. Calling plot with 'r.-' modifier
gives us a red line (r), with points marked by dots (.) and connected with a line (-).

Part 3. Limitations of digitization: Quantization error.
Use the following function generator (FG) and analog to digital converter (ADC; Matlab)
settings. Keep using the BNC “T” so you can have the output go both the oscilloscope
and the A/D converter so that you can observe both the analog and digitized signals.

For each configuration, acquire and plot the data in Matlab (print a copy of your figure to
put in your notebook). Remember to generate proper time-axes and labels as above. For
each case, i) show the plot, ii) explain if the data does or does not properly represent
the input sine wave and, iii) explain the cause of the problem, and iv) explain (with
help from the instructors, if necessary) how the problem could have been avoided.

Config1 FG: Sine wave
Amplitude = 100mV (center-to-peak)

Frequency = 200 Hz
DC Offset = 0V

 ADC: Sampling rate = 10,000 Samples / s
Acq time = 0.01 seconds

Config2 FG: Sine wave
Amplitude = 10mV (center-to-peak – set 10mVp-p)
Frequency = 200 Hz
DC Offset = 0 V

 ADC: Sampling rate = 10,000 Samples / s
Acq time = 0.01 seconds

Voltage Resolution of A/D:

The NI USB6001 is a 14-bit A/D converter that has an input range from -10 V to + 10 V.
However, the digitized value can only take on a finite number of values (or in other
words, the voltage output is quantized). How many distinct values N can a 14-bit register
hold? What is the voltage difference between each value ∆ V=? Does this explain
the observations in above? Do you observe anything that cannot be explained by the
quantization of the signal in the A/D process?

Part 3. Sampling music or speech.
Use your computer or phone to output an audio signal. Observe this signal on the
oscilloscope (try to make the signal as large as possible – 1 to 2 volts p-p is good,
somewhat less is ok). Use MATLAB and your ADC to obtain 4 audio samples, one at a
20kHz sampling rate, one at a 5 kHz sampling rate, one at a 3 kHz sampling rate, and one
at a 1 kHz sampling rate. Choose the number of samples so that each data set
corresponds to a few seconds of sound. You can play back the samples using the
MATLAB commands (assuming you name the data from the four scans data20k, data5k,
data 3k, and data1k):

>> soundsc(data20k, 20000);

>> soundsc(data5k, 5000);

>> soundsc(data3k, 3000);

>> soundsc(data1k, 1000);

What do the different samples sound like, compared with the original and with each
other. Try to describe them more precisely than just good and bad – what do you hear?
Why is this happening? Discuss with your instructors.

Part 4. If you have time: A/D Sampling Rate – Deeper Investigation

a) Sampling Interval and Signal Frequency

Clearly, if you sample too slowly you will not be able to record a signal of
frequency f. To explore this further, set your function generator at a frequency

f =1000 Hz with a center-to-peak amplitude of 2V (center-to-peak amplitude
4V into an infinite impedance load). Collect a 2 second sample of the signal –
using s.DurationInSeconds=2 and
y=s.startForeground()commands at the following sampling frequencies:
Fs = 20000, 10000, 4000, 2500, 1800, 1600, 1400 and 1200 samples/s. After
collecting each sample, use your computer speakers and the MATLAB
soundsc(y, Fs) command to play back each sample. (You can make a
MATLAB script m-file to do all these sequentially for easier comparisons!) Is
there some point where you think you are no longer hearing a signal at 1000 Hz?

If you have time, change the function generator to produce a signal at
f =2000 Hz , sample it at Fs = 20000, 10000, 4000, 3600, 3200, 2800 and

2400 Hz, and play out the sound using soundsc(y, Fs).

Can you generalize to say what the maximum frequency fmax is that can be
accurately digitized given a sampling frequency Fs? If you sample at a frequency
above the maximum frequency, what happens to the signal you hear? What is the
maximum frequency you could accurately digitize at F s=20000 Hz ,

F s=5000 Hz , and F s=1000 Hz ? What happens to signals at frequencies
above these maximum frequencies? Does this help explain why the sound files
you sampled were so distorted at lower sampling frequencies?

DO NOT FORGET TO HAVE THE INSTRUCTOR OR ONE OF THE TAs SIGN
OFF ON YOUR NOTEBOOK WHEN YOU ARE DONE.

Department of Electrical Engineering, Northeastern University.
Last updated: 10/11/16, N. McGruer; 9/29/15, 100 minutes, DH Brooks, 9/29/15, S W
McKnight; 8/10/15, M.Niedre

