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Lab 16: Digital Processing of the ECG

Sec 2 

Introduction:

Now that you have some ECG signals recorded using the analog portion of the 
ECG system, combined with the A/D converter, you are ready to work in the 
digital world to improve and extract information from your signal.  Although you 
filtered out many of the high frequencies before A/D conversion, you may be able 
to do a more complete job in the digital realm.  In addition, because 60 Hz 
interference is within the bandwidth of your ECG signal, it is not easy to filter it 
out of the signal before A/D conversion.  We may be able to do better by 
manipulating the digital signal.  Finally, extracting information such as the heart 
rate or the variability of the heart rate may be useful in clinical settings.  You 
should complete as many of these tasks as you have time for (not necessarily in 
this order).

1. Build a digital low-pass filter to reduce the noise in the ECG signal.  

2. Remove the 60 Hz interference by using a digital notch filter centered at 60 
Hz.

3. Automatically detect the heart rate in the ECG signal.

Background: As a reminder, in class we talked about the fact that digital filters are
typically implemented via linear  constant coefficient difference equations: 

We specify the filter via two sets of weights, {a} and {b} and then compute filter 
outputs y[n[ from inputs x[n] as :

Note that the output coefficients ak on the right side have minus signs so that they 
will have + signs on the left hand side --- this will matter when using the Matlab 
filter function we will describe below.



As described in class, this equation corresponds to an algorithm. (Actually, there 
are many many ways to actually implement this, but here we are talking 
conceptually, at a high level.) To see this, suppose that

1) we start computing outputs for n=0, and 

2) we know that both y[n] = 0  and x[n] = 0 for n<0. 

The input signal x(n) can be any discrete signal, as long as it is 0 for n<0.

Plugging into

1. We can compute the first output, at n=0, y[n=0] = b0x[0] (since all other terms 
are zero since they correspond to terms for which n<0. 

2. Then we can compute the next output value, y[n=1] = -a1y[0] + b0x[1] + b1x[0] 
(since again all other terms =0).

Plugging in from Step 1 we get y[n=1] =  -a1 b0x[0] + b0x[1]+  b1x[0]. 

3. Then the third value, y[n=2] = -a1y[1] -a2y[0] + b0x[2] + b1x[1]+b2x[0], for 
which we could substitute in the expressions we already have above for y[0] and 
y[1] .

4, 5, 6, …. We can just keep going to compute as many values of y[n] as we want.

Thus we see that we can recursively compute values of the output y[n] for as many
outputs as we like, based on the filter coefficients and the input values.

Matlab implements this algorithm (calculated in a more sophisticated way) in a 
function called, appropriately enough, filter. The Matlab function filter, as we will 
use it, takes as its inputs two vectors of the coefficients from the difference 
equation, 

one for the input, [b0 b1 … bM] and 

one for the output [1 a1 a1 …. aN],  

that describe the filter. 



These vectors, in fact, are what are returned by the filter design functions we will 
describe and use below. 

See help filter in Matlab and ask if you are not sure how to use it ---- but it really is
straightforward. You just supply the two vectors of coefficients (being sure to keep 
the order straight of which vector is the numerator and which is the denominator) 
and the vector of inputs, to filter, and it returns the filtered output.

Part I: Digital Filters from Analog Designs

It turns out that there are families of digital filters than can be designed, and 
implemented in Matlab, using the same polynomial prototype design approaches 
that are used for analog design. Here you will design and study digital Butterworth 
filters.

(As an aside, technically the system functions for digital filters are usually written 
as functions of a complex variable “z” rather than “s”, corresponding to something 
called the “Z Transform”. The Z Transform plays a role for discrete time systems 
corresponding to that played by the Laplace Transform for continuous time 
systems. Frequency selective filters in discrete time can be designed in terms of the
Z Transform polynomials, just as was done with the “s” polynomials for analog 
filters.)

1.1: Use help in Matlab to learn how to use buttord and butter and then design a 
digital Butterworth filter with the following specifications: 

1. pass band edge corresponding to 50Hz, 
2. stop band edge corresponding to 80Hz, 
3. pass band attenuation of no more than 2dB, and
4. stop band attenuation of at least 30 dB. 

Note that “design” means obtaining vectors of a and b coefficients to use with the 
filter program. The coefficients describe the denominator (a) and numerator (b) 
polynomials in the frequency response and also the corresponding weights in the 
difference equation – as with CT differential equations and the Fourier Transform, 
these sets of coefficients are (very conveniently!) the same!

Set the sampling rate to the rate you used to acquire your ECGs. 
NOTE: You may need to use what you have learned about how the sampling rate 
translates continuous time to discrete time frequencies (in the notation we have 
used, transforming f to F). Also you need to know that Matlab describes discrete 



frequencies so that 0 to 1 in Matlab routines maps to 0 to π in DT radian 
frequencies or 0 to ½ in DT per-sample frequencies. (And remember that half he 
sampling rate maps to π or ½.
Putting this all together means, for example, that if you wanted a band edge at 100 
Hz with a sampling rate of 2000 samples / second you would specify it to Matlab 
routine as 100/1000 = 0.1. 
Ask if this is not clear to you. 

As per our normal coding guidelines, be sure to use names you can remember for 
the two coefficient vectors returned by butter as we will use them in the next 
section to actually implement this filter and filter an acquired ECG signal.

1.2: Use the Matlab routine freqz to plot the magnitude and phase of the frequency 
response of the digital filter you just designed. Check to be sure that your design 
meets the specifications. (Note that if you run freqz with no outputs and it will 
produce the plots we are looking for.) What do you notice about the phase plot? In 
particular, over which frequency ranges, outside of sudden jumps, does the phase 
change most rapidly (and non-linearly)? Do you think this might affect the 
relationship between the output and the input? (Hint: is this change in the pass 
band of the filter?) Also, can you think what the jumps in the phase might 
correspond to? (Hint: how big are the jumps in radians or degrees?)

1.3 Filter some of your acquired ECGs with the digital Butterworth filter you 
designed using the Matlab filter function. Plot the output and compare it to the 
original acquired signal. What do you observe? You many see a large artifact at the 
start of the filtered signal which you may want to avoid including in your plot. Ask 
if you are not sure how to do this. You can also acquire ECG signals from both 
before and after the low pass filter in your circuit and try running your filter on 
both and compare results. 

Part II. Designing Digital Filters Directly

There are many ways to design digital filters directly from frequency specifications
in the discrete frequency domain without using an analog prototype design method.
You can learn more about this in the Linear Systems and Digital Signal Processing 
classes later on. Here we will experiment with one design, known as “Parks-
McClellan” (after the people who first derived this method) or “equiripple” (you 
will soon see why this name is appropriate) filters. The Matlab routines we will use
for the design are firpmord, to find the required order and other key parameters 



from the specifications, and firpm to actually design the filter from those 
parameters. 

If you run help firpmord you will see that it requires four sets of input variables. 
The first two parameters are 1) a vector of key “break” frequencies and 2) a vector 
of desired amplitudes at those frequencies. As an example, for a low pass filter 
with a band pass edge at a frequency corresponding to 250 Hz with a given 
sampling frequency and a stop band edge corresponding to 350 Hz, the first vector 
would be [250 350] and the second one [1 0]. Why do you think the second 
vector is [1 0]? Explain in your notebook, or ask if you don’t understand. The third
vector gives desired tolerances in each of those bands. Also note that if you do not 
supply a sampling rate as the fourth argument, the help says that the default value 
is 2. 

The parameters returned by the order design routine, firpmord, are used directly as 
the input to the filter design routine firpm. firpm has only output variable (one 
vector of coefficients) as this type of filter has only a numerator (or input weight) 
set of coefficients --- in other words the denominator polynomial is equal to 1, 
equivalent to all the a coefficients being equal to 0 except a0 which equals 1. In 
terms of the difference equation this implies that there are no “recursions” on past 
output values, just a direct weighting of the input signal. It turns out that this type 
of filter, known as Finite Impulse Response (FIR), has some significant advantages
in certain situations. Again, ask if you are curious to learn more.

2.1: Design a Parks-McClellan filter using these routines to low-pass filter your 
signal with the same band specifications as with the Butterworth filter. Play with 
the tolerances in the third argument to try to meet the specifications you used for 
the Butterworth filter. Use freqz to check your design. Note here you need to 
supply the number “1” for the input parameter “a” in freqz. 

Why do you think this is called an “equiripple” design? What do you notice about 
phase response? Can you explain the jumps in the phase response here? 

Filter your ECG signal(s) with your Parks-McClellan design using filter. Here, as 
with freqz you need to specify the “1” in the input for the 2nd input parameter. 

Try different design specifications for the Parks-McClellan design and record your 
results in your notebook. Note that if you make the filter too “good” in some sense 
(cutoff frequency too low, stopband ripple too small, transition too fast), it will 
begin to distort the signal.  Ask if you have questions.



2.2: Using the same methods, design a 60 Hz notch filter to remove the 60 Hz 
interference.  This is likely to result in signal artifacts, but see what happens and 
discuss. 

Part III.   Estimating Heart Rate from your ECGs

3.1. Process your acquired ECGs in Matlab to estimate an average heart rate. You 
can do this any way you would like. One approach is using threshold detection (or 
another method of your choice) to count the heartbeats in a certain interval and 
determine a heart rate.  Another would be to use the FFTof the heart signal to 
determine the heart rate, writing an automated program in MATLAB to try find the
frequency of the lowest frequency peak.  If you get this working you may want to 
acquire a longer run of ECGs and then you can study how stable the heart rate is ---
for example, find the average heart rate and its standard deviation, or try plotting 
the beat-to-beat interbeat interval as a function of “time” (where time here means 
beats).

You do not need to hand anything in for this lab. Do have the TAs sign off on 
whatever you get done.
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