
EECE 2510 – Circuits and Signals: Biomedical Applications

Lab 16: Digital Processing of the ECG

Sec 2

Introduction:

Now that you have some ECG signals recorded using the analog portion of the
ECG system, combined with the A/D converter, you are ready to work in the
digital world to improve and extract information from your signal. Although you
filtered out many of the high frequencies before A/D conversion, you may be able
to do a more complete job in the digital realm. In addition, because 60 Hz
interference is within the bandwidth of your ECG signal, it is not easy to filter it
out of the signal before A/D conversion. We may be able to do better by
manipulating the digital signal. Finally, extracting information such as the heart
rate or the variability of the heart rate may be useful in clinical settings. You
should complete as many of these tasks as you have time for (not necessarily in
this order).

1. Build a digital low-pass filter to reduce the noise in the ECG signal.

2. Remove the 60 Hz interference by using a digital notch filter centered at 60
Hz.

3. Automatically detect the heart rate in the ECG signal.

Background: As a reminder, in class we talked about the fact that digital filters are
typically implemented via linear constant coefficient difference equations:

We specify the filter via two sets of weights, {a} and {b} and then compute filter
outputs y[n[from inputs x[n] as :

Note that the output coefficients ak on the right side have minus signs so that they
will have + signs on the left hand side --- this will matter when using the Matlab
filter function we will describe below.

As described in class, this equation corresponds to an algorithm. (Actually, there
are many many ways to actually implement this, but here we are talking
conceptually, at a high level.) To see this, suppose that

1) we start computing outputs for n=0, and

2) we know that both y[n] = 0 and x[n] = 0 for n<0.

The input signal x(n) can be any discrete signal, as long as it is 0 for n<0.

Plugging into

1. We can compute the first output, at n=0, y[n=0] = b0x[0] (since all other terms
are zero since they correspond to terms for which n<0.

2. Then we can compute the next output value, y[n=1] = -a1y[0] + b0x[1] + b1x[0]
(since again all other terms =0).

Plugging in from Step 1 we get y[n=1] = -a1 b0x[0] + b0x[1]+ b1x[0].

3. Then the third value, y[n=2] = -a1y[1] -a2y[0] + b0x[2] + b1x[1]+b2x[0], for
which we could substitute in the expressions we already have above for y[0] and
y[1] .

4, 5, 6, …. We can just keep going to compute as many values of y[n] as we want.

Thus we see that we can recursively compute values of the output y[n] for as many
outputs as we like, based on the filter coefficients and the input values.

Matlab implements this algorithm (calculated in a more sophisticated way) in a
function called, appropriately enough, filter. The Matlab function filter, as we will
use it, takes as its inputs two vectors of the coefficients from the difference
equation,

one for the input, [b0 b1 … bM] and

one for the output [1 a1 a1 …. aN],

that describe the filter.

These vectors, in fact, are what are returned by the filter design functions we will
describe and use below.

See help filter in Matlab and ask if you are not sure how to use it ---- but it really is
straightforward. You just supply the two vectors of coefficients (being sure to keep
the order straight of which vector is the numerator and which is the denominator)
and the vector of inputs, to filter, and it returns the filtered output.

Part I: Digital Filters from Analog Designs

It turns out that there are families of digital filters than can be designed, and
implemented in Matlab, using the same polynomial prototype design approaches
that are used for analog design. Here you will design and study digital Butterworth
filters.

(As an aside, technically the system functions for digital filters are usually written
as functions of a complex variable “z” rather than “s”, corresponding to something
called the “Z Transform”. The Z Transform plays a role for discrete time systems
corresponding to that played by the Laplace Transform for continuous time
systems. Frequency selective filters in discrete time can be designed in terms of the
Z Transform polynomials, just as was done with the “s” polynomials for analog
filters.)

1.1: Use help in Matlab to learn how to use buttord and butter and then design a
digital Butterworth filter with the following specifications:

1. pass band edge corresponding to 50Hz,
2. stop band edge corresponding to 80Hz,
3. pass band attenuation of no more than 2dB, and
4. stop band attenuation of at least 30 dB.

Note that “design” means obtaining vectors of a and b coefficients to use with the
filter program. The coefficients describe the denominator (a) and numerator (b)
polynomials in the frequency response and also the corresponding weights in the
difference equation – as with CT differential equations and the Fourier Transform,
these sets of coefficients are (very conveniently!) the same!

Set the sampling rate to the rate you used to acquire your ECGs.
NOTE: You may need to use what you have learned about how the sampling rate
translates continuous time to discrete time frequencies (in the notation we have
used, transforming f to F). Also you need to know that Matlab describes discrete

frequencies so that 0 to 1 in Matlab routines maps to 0 to π in DT radian
frequencies or 0 to ½ in DT per-sample frequencies. (And remember that half he
sampling rate maps to π or ½.
Putting this all together means, for example, that if you wanted a band edge at 100
Hz with a sampling rate of 2000 samples / second you would specify it to Matlab
routine as 100/1000 = 0.1.
Ask if this is not clear to you.

As per our normal coding guidelines, be sure to use names you can remember for
the two coefficient vectors returned by butter as we will use them in the next
section to actually implement this filter and filter an acquired ECG signal.

1.2: Use the Matlab routine freqz to plot the magnitude and phase of the frequency
response of the digital filter you just designed. Check to be sure that your design
meets the specifications. (Note that if you run freqz with no outputs and it will
produce the plots we are looking for.) What do you notice about the phase plot? In
particular, over which frequency ranges, outside of sudden jumps, does the phase
change most rapidly (and non-linearly)? Do you think this might affect the
relationship between the output and the input? (Hint: is this change in the pass
band of the filter?) Also, can you think what the jumps in the phase might
correspond to? (Hint: how big are the jumps in radians or degrees?)

1.3 Filter some of your acquired ECGs with the digital Butterworth filter you
designed using the Matlab filter function. Plot the output and compare it to the
original acquired signal. What do you observe? You many see a large artifact at the
start of the filtered signal which you may want to avoid including in your plot. Ask
if you are not sure how to do this. You can also acquire ECG signals from both
before and after the low pass filter in your circuit and try running your filter on
both and compare results.

Part II. Designing Digital Filters Directly

There are many ways to design digital filters directly from frequency specifications
in the discrete frequency domain without using an analog prototype design method.
You can learn more about this in the Linear Systems and Digital Signal Processing
classes later on. Here we will experiment with one design, known as “Parks-
McClellan” (after the people who first derived this method) or “equiripple” (you
will soon see why this name is appropriate) filters. The Matlab routines we will use
for the design are firpmord, to find the required order and other key parameters

from the specifications, and firpm to actually design the filter from those
parameters.

If you run help firpmord you will see that it requires four sets of input variables.
The first two parameters are 1) a vector of key “break” frequencies and 2) a vector
of desired amplitudes at those frequencies. As an example, for a low pass filter
with a band pass edge at a frequency corresponding to 250 Hz with a given
sampling frequency and a stop band edge corresponding to 350 Hz, the first vector
would be [250 350] and the second one [1 0]. Why do you think the second
vector is [1 0]? Explain in your notebook, or ask if you don’t understand. The third
vector gives desired tolerances in each of those bands. Also note that if you do not
supply a sampling rate as the fourth argument, the help says that the default value
is 2.

The parameters returned by the order design routine, firpmord, are used directly as
the input to the filter design routine firpm. firpm has only output variable (one
vector of coefficients) as this type of filter has only a numerator (or input weight)
set of coefficients --- in other words the denominator polynomial is equal to 1,
equivalent to all the a coefficients being equal to 0 except a0 which equals 1. In
terms of the difference equation this implies that there are no “recursions” on past
output values, just a direct weighting of the input signal. It turns out that this type
of filter, known as Finite Impulse Response (FIR), has some significant advantages
in certain situations. Again, ask if you are curious to learn more.

2.1: Design a Parks-McClellan filter using these routines to low-pass filter your
signal with the same band specifications as with the Butterworth filter. Play with
the tolerances in the third argument to try to meet the specifications you used for
the Butterworth filter. Use freqz to check your design. Note here you need to
supply the number “1” for the input parameter “a” in freqz.

Why do you think this is called an “equiripple” design? What do you notice about
phase response? Can you explain the jumps in the phase response here?

Filter your ECG signal(s) with your Parks-McClellan design using filter. Here, as
with freqz you need to specify the “1” in the input for the 2nd input parameter.

Try different design specifications for the Parks-McClellan design and record your
results in your notebook. Note that if you make the filter too “good” in some sense
(cutoff frequency too low, stopband ripple too small, transition too fast), it will
begin to distort the signal. Ask if you have questions.

2.2: Using the same methods, design a 60 Hz notch filter to remove the 60 Hz
interference. This is likely to result in signal artifacts, but see what happens and
discuss.

Part III. Estimating Heart Rate from your ECGs

3.1. Process your acquired ECGs in Matlab to estimate an average heart rate. You
can do this any way you would like. One approach is using threshold detection (or
another method of your choice) to count the heartbeats in a certain interval and
determine a heart rate. Another would be to use the FFTof the heart signal to
determine the heart rate, writing an automated program in MATLAB to try find the
frequency of the lowest frequency peak. If you get this working you may want to
acquire a longer run of ECGs and then you can study how stable the heart rate is ---
for example, find the average heart rate and its standard deviation, or try plotting
the beat-to-beat interbeat interval as a function of “time” (where time here means
beats).

You do not need to hand anything in for this lab. Do have the TAs sign off on
whatever you get done.

	EECE 2510 – Circuits and Signals: Biomedical Applications
	Lab 16: Digital Processing of the ECG
	Sec 2

