Complex Numbers Homework (\#5), Rev 1.
 C. DiMarzio, Northeastern University
 EECE2150, Fall 2018

1. Calculate the sum $(4+3 j)+(3+4 j)$. Convert to polar form.

2a. Calculate the product, $(4+3 j)(3+4 j)$. Do this in rectangular form.
2 b . Convert both numbers to polar form and compute the product. Do your answers agree?

Write the following in rectangular form.
3. $100 \sqrt{2} \angle-\pi / 4$.
4. $e^{4+j 3 \pi / 4}$.
5. $e^{j 282 \pi}$
6. j^{2017}.

Write the following in polar form.
7. $\sqrt{2 j}$.
8. 85 Volts $+j 14$ Volts.
9. $(3+4 j) e^{-j / 2}$.
10. $j(3-6 j)$.

Compute the complex conjugate in the same form as the given expression.
11. $17 \angle \pi / 12$
12. $4-3 j$
13. $36 e^{j 3 \pi / 4}$
14. In Matlab, generate a time axis; $[\operatorname{tax}=[0: 0.2: 10] * 1 \mathrm{e}-6$; which represents time in seconds. Then generate the complex variable, V_{0} with an amplitude of 10 Volts and a phase of 30 degrees.

Next, compute the function of time,

$$
V=V_{0} e^{j 2 \pi f t}
$$

, where $F=1 \mathrm{Mhz}$, and t is the time axis, tax.
14a. Plot the real and imaginary parts.
14b. Plot $V+V^{*}$.
14c. Repeat 14 b after changing the phase of V_{0} to 60 degrees.

