P1.
$$v_c(t) = 5(1 + \exp(-100t))$$
 for $t>0$

P2

(a)

- (b-1) $3\sin((2\pi/3)n + \pi/3) + 4\cos((\pi/2)n \pi/6)$
- (b-2) $3\sin(4000\pi t \pi/3) + 4\cos((3000\pi t \pi/6)$
- (b-3) No because the 2^{nd} term is aliased as the sampling rate is < 2x the frequency of 4500Hz.
- $(c-1) (1/2)*6/(2^{10}-1) \sim= 3mV$
- $(c-2) \sim 3mV$
- (c-3) 1 V
- (d) $X(\omega) = 2\exp(-j2\omega)(1/1 + j2\omega)$

Р3

- (a) At DC and as $\omega \rightarrow \infty$ $v_0(t) = 0$
- (b) R+ j(ω L + (1/ ω C))
- (c) Call the result in (b) $Z_T(\omega)$. Then V_0 = $R/Z_T(\omega)$.
- (d) Yes. At DC, the first term in the denominator = 0 but the 2^{nd} -> ∞ so the fraction = 0. As ω -> ∞ the 2^{nd} term in the denominator goes to 0 but the 1^{st} -> ∞ so the fraction = 0.
- (e) $R_{eq} = 20k\Omega$, $L_{eq} = 15mH$

P4

(a) if we put ground at the node where the – side of the source, one of the 20Ω resistors and the 40Ω resistor are connected, and let V_a and V_b represent the node voltages at the nodes labeled as a and b, we get

$$[1/8 - 1/20 \quad [V_a = [1 -1/20 \quad 3/20] \quad V_b]$$

(b) If we let I_1 be the mesh current for the loop that has the source, the 20Ω , and the $40~\Omega$ resistors, I_2 be the mesh current for the loop that has the $3~20\Omega$ resistors, and I_3 be the mesh current for the loop that has the $2~20\Omega$ resistors and one 40Ω resistor, we get

$$\begin{bmatrix} 60 & -20 & -40 & [I_1 & & & [20 \\ -20 & 60 & -20 & I_2 & & = & 0 \\ -20 & -40 & 80 &] & I_3 &] & & 0 \end{bmatrix}$$

(c)
$$V_{th} = 10/3 \text{ V}$$
, $R_{th} = 70/3$

P5

(a)
$$1 + R_1 / (R_2 (1 + j\omega CR_1))$$

(b)
$$V_0(\omega) = V_s(\omega) (1 + R_1 / (R_2 (1 + j\omega CR_1)))$$

(c)
$$v_0(t) = 8 + 8/\sqrt{26}\cos(250t + \pi/3 - \tan^{-1}(5))$$