EECE 2150 - Circuits and Signals, Biomedical Applications Final Exam

Name:

\qquad

Instructions:

- Closed book, closed notes; Computers and cell phones are not allowed
- Equation sheet, 8.5×11 inches, both sides, permitted
- Scientific calculators are allowed
- Complete all 6 problems
- Show all work and place a box around all your final answers
- Include units with answers as appropriate
- Show your work for partial credit
- You may write on both sides of the pages

1) Find the Thevenin equivalent circuit across terminals a, b for the circuit below:

Answers: $\quad \begin{array}{ll} & \mathrm{V}_{\mathrm{Th}}= \\ & \mathbf{R}_{\mathrm{Th}}=\end{array}$

2A) Use either the node-voltage or the mesh-current technique to set up the matrix equations for either the currents i_{1} and i_{2} or for the voltage V_{A}..

2B) Solve the resulting equations to find the power dissipated in the 100 ohm resistor.
(extra space on the next page)

Name:

In the circuit below, the switch has been in position A for a long time. At $t=0$, it is switched to positon B .

3A) Find the current through the inductor $i_{L}\left(0^{-}\right)$and the voltage across the inductor $v_{L}\left(0^{-}\right)$just before the switch is thrown.
3B) Find an expression for the current through the inductor as a function of time $i_{L}(t)$ for $t>0$.
3C) Find the current through the inductor at $t=1 \mathrm{~ms}$.
3D) Find the voltage across the inductor at $t=1 \mathrm{~ms}$.
(extra space on the next page)

Name:

Assuming the op amp is ideal, find i_{L} in the circuit below.

(extra space on the next page)

Question 5 (20 Points)

For the following circuit:

5A) Assuming that $R_{i}=100 \Omega, L=100 \mathrm{mH}, C=1 \mu F$, and $R=1 \mathrm{k} \Omega$, find the transfer function $\left(v_{o} / v_{i}\right)$ at $\omega=1000 \mathrm{rad} / \mathrm{s}$.
5B) If $v i=5 \cos (1000 t)$, what is the output voltage?

Question 6 (20 Points)

6A) If the op amp in the circuit above is ideal, find an expression for the transfer function $H(\omega)=v_{o} / v_{i}$
6B) If $R 1=5 \mathrm{k} \Omega, \mathrm{R} 2=15 \mathrm{k} \Omega$, and $\mathrm{C}=1 \mu \mathrm{~F}$ and the input voltage is given by $v_{i}(t)=0.5 \cos (200 t)$, find the output voltage $v_{o}(t)$.

6 C) If $\mathrm{R} 1=5 \mathrm{k} \Omega, \mathrm{R} 2=15 \mathrm{k} \Omega$, and $\mathrm{C}=1 \mu \mathrm{~F}$, sketch the magnitude of $H(\omega)$ vs. frequency on the axes shown. Label two values on each axis.

