EECE 2150 – Circuits and Signals, Biomedical Applications Final Exam

Name:										

Instructions:

- Closed book, closed notes; Computers and cell phones are not allowed
- Equation sheet, 8.5x11 inches, both sides, permitted
- Scientific calculators are allowed
- Complete all 6 problems
- Show all work and place a box around all your final answers
- Include units with answers as appropriate
- Show your work for partial credit
- You may write on both sides of the pages

1) Find the Thevenin equivalent circuit across terminals a ,b for the circuit below:

Answers:

$$V_{Th} =$$

$$R_{Th} =$$

- 2A) Use either the node-voltage or the mesh-current technique to set up the matrix equations for either the currents i_1 and i_2 or for the voltage $V_{A..}$
- 2B) Solve the resulting equations to find the power dissipated in the 100 ohm resistor.

(extra space on the next page)

Question 3 (20 Points)

Name:

In the circuit below, the switch has been in position A for a long time. At t=0, it is switched to position B.

- 3A) Find the current through the inductor $i_L(0^-)$ and the voltage across the inductor $v_L(0^-)$ just before the switch is thrown.
- 3B) Find an expression for the current through the inductor as a function of time $i_L(t)$ for t > 0.
- 3C) Find the current through the inductor at t = 1 ms.
- 3D) Find the voltage across the inductor at t = 1 ms.

(extra space on the next page)

Assuming the op amp is ideal, find $i_{\scriptscriptstyle L}$ in the circuit below.

(extra space on the next page)

Question 5 (20 Points)

Name:

For the following circuit:

- 5A) Assuming that R_i=100 Ω , L=100mH, C=1 μ F, and R=1k Ω , find the transfer function (v_o/v_i) at ω =1000 rad/s.
- 5B) If vi=5cos(1000t), what is the output voltage?

Question 6 (20 Points)

- 6A) If the op amp in the circuit above is ideal, find an expression for the transfer function $H(\omega) = \frac{v_o}{v_i}$
- 6B) If R1=5kΩ, R2=15kΩ, and C=1μF and the input voltage is given by $v_i(t)=0.5\cos(200t)$, find the output voltage $v_o(t)$.
- 6C) If R1=5kΩ, R2=15kΩ, and C=1μF, sketch the magnitude of $H(\omega)$ vs. frequency on the axes shown. Label two values on each axis.

Question 6 (extra space)