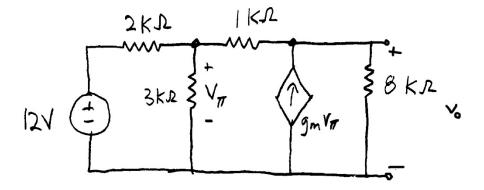
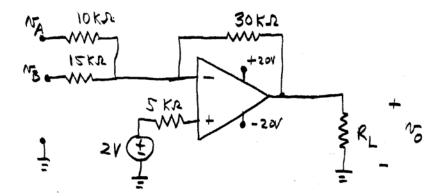
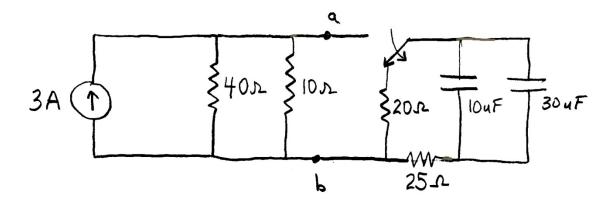
Northeastern University College of Engineering

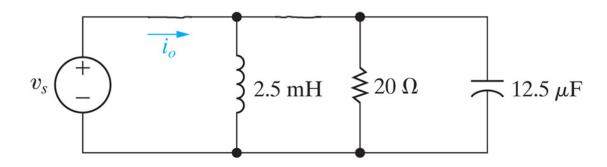

EECE2150 Circuits and Signals: Biomedical Applications Final Exam April 29, 2015

Name:
□ Show all work leading to the solutions.
☐ Place a box or circle around all final results.
☐ You may use your calculators, but are not permitted to share them.
☐ Turn off your cell phone , and remove it from your table.
☐ This test contains 5 problems and one 5-point extra credit problem . If
you need more space, you can write on the back of the pages.

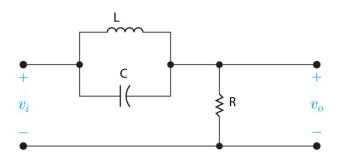

- 1. (20 pts) In the circuit below the $g_m = 0.03 \frac{A}{V}$.
 - a. Write a set of node-voltage equations and an equation of constraint expressing v_{π} in terms of your node voltages.
 - Put your equations in standard form

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} V_A \\ V_B \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$


 $\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} V_A \\ V_B \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$ c. Find the solution for v_o **OR** write the MATLAB commands you would use to find v_o .


2. (20 pts) The op amp in the circuit below can be assumed to be ideal. If $v_A = 4$ V and $v_B = 1$ V find the output voltage v_o .

- 3. (20 pts) In the circuit shown, the switch is thrown as shown at time t = 0.
 - a. Convert the circuit to the left of points (a)-(b) to a Thevenin voltage source.
 - b. What is the equivalent capacitance of the two capacitors?
 - c. Find an expression for the voltage across the capacitors as a function of time $V_C(t)$.
 - d. What is V_C at = 4 ms?


- 4. (20 pts) In the circuit below $v_s(t) = 3\cos 8000t$ V
 - a. Find the steady-state expression for $i_o(t)$
 - b. Find the real power dissipated in the circuit (or equivalently the real power supplied by the source).

- 5. (20 pts) The following questions refer to the circuit shown.
 - a. Is the op am circuit shown below a low-pass or high-pass filter?
 - b. Assuming that the capacitor has a value C=10 μF , select values of R_1 and R_2 to give a cut-off frequency of $\omega_0=1.0$ radians/s and a high-frequency gain $\left|\frac{V_0}{V_c}\right|=5$.
 - c. Assuming that you have a V_s that has Fourier components as shown in the graph, sketch what you would expect the Fourier components of V_o to be i.e. make a plot similar to the one shown below for $V_o(\omega)$.

Extra Credit: (5 pts) Derive the frequency at which the transfer function $H(\omega) = \frac{V_0}{V_i}$ of the following circuit is equal to zero.

