Installing the toolbox and setting up MATLAB

1. The software is distributed in a compressed tarball. The files have been packed up using two different utilities: gzip and zip. The files are the same – the difference is only for convenience in unpacking the files

For UNIX/Linux, download mvt.tar.gz

unzip the file using gzip:

 % gunzip mvt.tar.gz

unpack the tarball:

 % tar -xf mvt.tar

This will create a directory called mvt1.0 in which all the .m files are located

For Windows, download mvt.zip:

Use WinZIP to decompress and unpack the zip file.

2. Run MATLAB. Once loaded, you will need to set the current directory to mvt1.0, where all the files are located. Do this at the top of the MATLAB window using the Current Window text box.

3. When first creating an object, you must specify package and method:

 package.method(input parameters)

 Example: detector = sensor.monopoleDetector(A);

 %a call to the monopoleDetector constructor method of the sensor package

 Once you have a handle to an object, you can use the handle to access the other methods:

handle.method(input parameters);

Example: detector.display;

See the demonstration for more details.

4. To run a simulation, MVT objects must be created in a particular order. Specific details on how to create and work with the individual objects is given below.

1. Create a property object for the anomaly.

2. Create a property object for the background.

3. Create one or more anomalies.

5. Create a grid object.

6. Create the sets of sources and detectors.

7. Create a born object.

8. Call the born solver.

The sensor package

The sensor specification package contains the classes necessary to define a sensor system. Sensors are defined as either sources or detectors. Sensors can be classified as monopole, dipole, or have an arbitrary number of poles. This software supports only monopole sensors.

All of the source and detector classes are subclasses of the abstract base classes 'source' and 'detector'. One should not attempt to instantiate an instance of these two base classes.

The source class defines two members (frequencies and numFreq) which are passed on to the subclasses via inheritance. Class detector has no data members.

detector

This is an abstract base class that serves as the basis for defining all other types of detector sensors. It contains no members. Only the two methods are passed on to the subclasses. Since this is an abstract base class, one cannot create a base detector object.

Methods

disp – method to display class contents

display – method to display class contents

monopoleDetector

A monopole detector is a simple one-pole receiver. It has a location given by 3-dimensional coordinates and an amplitude. This class represents a set of detectors.

Attributes

detector_locations – an N x 3 matrix of coordinates of detector locations

amplitude – a column vector of amplitude coefficients (used for weighting the sensors)

Methods

monopoleDetector – class constructor

disp – method to display class contents (inherited)

display – method to display class contents (inherited)

Usage

monopoleDetector()

The constructor can be invoked with either 1 or 2 input values. If invoked with no input values, an error results.

The first parameter is always the N x 3 matrix of detector locations. If the input matrix does not have 3 columns, an error results. Each row of this matrix is for one detector: column 1 is for the x-coordinate, column 2 for y, and columne 3 for z. If a second parameter is input, it is a column vector of amplitude coefficients. It must be an N x 1 vector.

Before creating a monopoleDetector object, one should first create an N x 3 matrix of detector positions, and a column vector of detector amplitude coefficients (if needed). If the amplitude coefficients are not being used, they will be set to 1 by default. A function is provided to read a file of detector locations and amplitudes; see the Utilities section below.

To create a set of monopole detectors with locations stored in matrix M, with amplitudes of 1:

detectors = sensor.monopoleDetector(M);

To create a set of detectors with specified amplitude values:

detectors = sensor.monopoleDetector(M, a);

It is not possible to specify a value for the amplitudes without explicitly providing a matrix of detector coordinates.

display() and disp()

The display methods are used as follows: given h a handle to a monopoleDetector object,

h.display;

h.disp;

source

This is an abstract base class that serves as the basis for defining all other types of source sensors. It contains two data members which are passed on to the subclasses via inheritance. However, since this is an abstract base class, one cannot create a base source object.

Attributes

frequencies – array of frequency values at which the source operates

numFreq – number of frequency values

wavelengths – a set of wavelengths for the experiments

Methods

disp – method to display class contents

display – method to display class contents

monopoleSource

A monopole source is a simple one-pole transmitter. It has a location given by 3-dimensional coordinates, a magnitude, and a phase. This class represents a set of sources. The source locations, amplitudes, and phase values can be specified during instantiation. Initially the array of frequencies is set to contain only a the value 0 as the default frequency.

Attributes

source_locations – an N x 3 matrix of source coordinates within the grid

amplitude – a column vector of amplitude values, one per source

phase – a column vector of phase values, one per source

frequencies – array of frequency values at which the source operates (inherited)

numFreq – number of frequency values (inherited)

wavelengths – a set of wavelength values (inherited)

Methods

monopoleSource – class constructor

setFrequency – assign a set of one or more frequencies to the frequency list

disp – method to display class contents (inherited)

display – method to display class contents (inherited)

Usage

monopoleSource()

The constructor can be invoked with 1 to 3 input values. If invoked with any other number of input values, an error results. Before creating a monopoleSource object, one should first create an N x 3 matrix of source positions, and a column vector of source amplitude coefficients (if needed). If the amplitude coefficients are not being used, they will be set to 1 by default. A function is provided to read a file of source locations, amplitudes, and phase values; see the Utilities section below.

The first parameter is always the N x 3 matrix of coordinates defining the positions of the sources in the grid. Colum 1 is for the x-location, column 2 for y, column 3 for z. If a second parameter is present, it must be a column vector containing amplitude values. If no amplitude values are provided, a default of 1 is assigned. The third, if present, is for phase. If not provided, the default for phase is 0. The default frequency value is 0.

To create a monopole source with a matrix of coordinate positions only, amplitudes of 1 and phase values of 0:

d = sensor.monopoleSource(M);

To create a monopole source with specified amplitude values:

d = sensor.monopoleSource(M, a);

To create a monopole source with specified amplitudes and phase values:

d = sensor.monopoleSource(M, a, p);

As with the monopoleDetector constructor, it is not possible to specify a value for the magnitude, phase, nor for frequencies without explicitly providing input values for x, y, and z.

setFrequency()

This method sets the frequencies list and the number of frequencies. It requires that a list of one or more frequency values be input. If a list is provided, it is to be in the form of a row vector. Given h a handle to a monopoleSource object,

To set one frequency value:

h.setFrequency(200e6);

To set several frequency values:

h.setFrequency([200e6, 220e6, 240e6]);

display() and disp()

The display methods are used as follows: given h a handle to a monopoleSource object,

h.display;

h.disp;

The medium package

grid

The grid class serves as both a parent class to regularGrid and semiregularGrid, and it itself used to implement arbitrary grid structures.

Attributes

dimX – the number of points in the x direction

dimY – the number of points in the y direction

dimZ – the number of points in the z direction

C_medium – speed of energy traveling through the medium of which the grid consists

IndexOfRefraction – the index of refraction in the medium

D – the value of the diffusion coefficient

Background_prop – a handle to the object that defines the grid's background properties

anomalies – a vector of anomaly objects

Voxels – an N x 3 matrix voxel positions

Voxel_Properties – an N x 2 matrix of voxel properties

Methods

grid – class constructor

disp – display the class contents

display – display the class contents

configure – assign properties to each voxel in the grid

setIndexOfRefraction – assign a value for the index of refraction

setCMedium – set the speed of energy in the medium

setDiffusionCoefficient – set the speed of energy in the medium

setAnomalyList – insert a list of one or more anomalies into the grid

Usage

grid()

For these experiments you will only be required to work with regular grids, so no instantiation of this class is necessary.

configure()

The configure method configures the grid by assigning properties to each voxel position. Prior to running this method, one must first assign a mediumSetup object to the grid object. One can do this directly as: g.mediumSetup = ms; where ms is a mediumSetup object, or may do so during the construction of the grid object.

The configure method serves two purposes. The first is to assign properties to each voxel, and the second is to insert anomalies into the grid. The function begins by assigning the background property to all existing voxels. Next, it traverses through the list of anomalies and ascertains which voxels are enclosed within the anomaly using the anomaly's encloses() method. The property of enclosed voxels is set to the properties of the anomaly. Prior to running the configure() method, the voxel list is set up in the constructor as a N x 3 matrix, where N is the number of voxels as computed by the grid dimensions and step size. After running the configure() method, the N x 2 matrix of voxel properties are set. The two columns are assigned either the background property values of mua, and mus' or the anomaly property's values of mua and mus', depending on whether or not the voxel is enclosed within an anomaly.

If there are no anomalies to insert, then the list of voxel properties will be assigned the properties of the background only.

The call requires no input parameters. However, the object's background properties field must be set prior to calling the configure method, as configure() needs this information.

Given a grid object g, the configure function is invoked as follows:

g.configure;

setIndexOfRefraction()

This method sets the value of the index of refraction, which is the only required input parameter. The input value must be a scalar and cannot be zero. Given g a handle to a grid object,

g.setIndexOfRefraction(1.37);

setCMedium()

This method sets the value of the speed of energy through the medium. If the index of refraction has not yet been set, an error will be thrown. The input parameter is the raw speed of energy relevant to the type of experimentation. For example, for DOT, the energy form is light, so it is the speed of light (in cm per second) that is required. Given g a handle to a grid object,

g.setCMedium(2.9999e10);

setDiffusionCoefficient()

This method sets the value of the diffusion coefficient. If the speed of energy in the mediu has not yet been set, an error will be thrown. A reduced scattering coefficient of the background medium must be input. If the input reduced scattering coefficient or the grid’s speed of energy in the medium is 0, an error will be thrown. Given g a handle to a grid object, and bgprop a background property object:

g.setDiffusionCoefficient(bgprop.mu_sp);

setAnomalyList()

This method assigns one or more anomalies to the grid. A row vector of one or more anomalies must be provided as an input parameter. Given g a handle to a grid object, and anomalies a vector of one or more anomalies:

g.setAnomalyList(anomalies);

disp() and display()

The display methods are used as follows: given g a handle to a grid object,

g.display;

g.disp;

regularGrid

The regularGrid class is a subclass of the grid class. It defines a uniformly spaced grid. By default, the stepSize of a regular grid is 1. Note however that the voxel step size need not be uniform.

The constructor sets up the grid. First, the input parameters are assigned into local data members. The next step is to set up the voxel list. The voxel list is a 3 x N matrix, where N is the number of voxels, which is determined based on the grid configuration. The first column is for the x coordinate values, the second for y, and the third for z. A background object must be provided to define the medium properties. A vector of step size values can be input if the default value is not to be used.

Attributes

Uniform – a boolean flag to indicate whether or not the voxel step size is or is not uniform

StepSize – the unit distance between each voxel in the grid, a row vector of length 3

dimX – the number of points in the x direction (inherited)

dimY – the number of points in the y direction (inherited)

dimZ – the number of points in the z direction (inherited)

C_medium – speed of energy through the medium of which the grid consists (inherited)

IndexOfRefraction – index of refraction in the medium (inherited)

D – the value of the diffusion coefficient

background_prop – a handle to background property object (inherited)

anomalies – a vector of anomaly objects

Voxels – an array of individual grid positions and properties (inherited)

Voxel_Properties – an N x 2 matrix of voxel properties

Methods

regularGrid – class constructor

disp – display the class contents (inherited)

display – display the class contents (inherited)

configure – assign properties to each voxel in the grid (inherited)

setIndexOfRefraction – assign a value for the index of refraction (inherited)

setCMedium – set the speed of energy in the medium (inherited)

setDiffusionCoefficient – set the speed of energy in the medium (inherited)

setAnomalyList – insert a list of one or more anomalies into the grid (inherited)

Usage

regularGrid()

The constructor method creates an object of type regularGrid. 4 to 6 input parameters are required. Any other invocation is invalid. Based on the number of x, y, and z and the step size, the constructor builds a voxel list. The voxel list is an N x 3 matrix, in which column 1 corresponds to x, column 2 corresponds to y, and column 3 corresponds to z positions for each voxel, and N is the total number of voxels. The number of voxels is computed based on the values of x, y, z, and step size. A background property object must be passed to the constructor as the fourth parameter. Optionally, the 5th parameter is a 1x3 list of step sizez, and optionally, the 6th parameter is a z offset value. This allows one to not compute results for a region of the grid (in z) close to the surface of the grid (i.e., in close proximity to the sources).

To create a regular grid with dimensions 10 x 8 x 7 with the default step size of 1:

r = medium.regularGrid(10, 8, 7, bgprop);

To create a regular grid with the above dimensions and a step size of 0.5 in all directions:

r = medium.regularGrid(10, 8, 7, bgprop, [0.5 0.5 0.5]);

To create a regular grid with the above dimensions and non-uniform step size (0.25 in x direction, 0.25 in y direction, and 5 in z-direction:

r = medium.regularGrid(10, 8, 7, bgprop, [0.25 0.25 5]);

To create a regular grid with the above dimensions and non-uniform step size (0.25 in x direction, 0.25 in y direction, and 5 in z-direction, starting to compute results at z = 1:

r = medium.regularGrid(10, 8, 7, bgprop, [0.25 0.25 5], 1);

inherited methods

See descriptions under the parent class above.

anomaly

An anomaly is an object that is located within the grid. It is the object of interest being evaluated. In the Multi-View Tomography Toolbox, two types of anomalies are supported: cubical ones and spherical ones. It is assumed that individual anomalies are not irregular in shape. When setting up the medium, one can define more than one anomaly within a grid, so if there were interest in creating an irregular anomaly, one could define the multiple anomalies with overlapping center positions such that an irregular shape is created.

The anomaly classes define the properties and location of the different types of anomalies that can be defined. The two anomaly classes are subclasses of the abstract base class 'anomaly'. One should not attempt to instantiate an instance of this base class.

The anomaly class defines one data member (property) which is passed to the subclasses via inheritance. This data member is a handle to the property object that defines the properties

of the anomaly.

Attributes

CenterX - the center of the anomaly's x-coordinate

CenterY - the center of the anomaly's y-coordinate

CenterZ - z coordinate of the center of the anomaly

property - a handle to the property type; it defines the properties of this anomaly

CubicalAnomaly

This class defines an anomaly that is cubic in shape. An anomaly is an object of interest contained within a grid. It has a location, a size, and properties.

Attributes

CenterX - the center of the anomaly's x-coordinate (inherited)

CenterY - the center of the anomaly's y-coordinate (inherited)

CenterZ - z coordinate of the center of the anomaly (inherited)

length - length of the cube's sides

property - a handle to the property type; it defines the properties of this anomaly (inherited)

Methods

cubicalAnomaly – class constructor

encloses – evaluate if a given coordinate position is enclosed within the anomoly

disp – method to display class contents (inherited)

display – method to display class contents (inherited)

Usage

cubicalAnomaly()

This is the constructor for the cubicalAnomalyclass. The object's identifying tag is set to 'Cubical Anomaly' and the object's fields are initialized based on the number of input arguments. A valid invocation requires 0 or 3 - 5 input parameters. Any invocation with other than these numbers of parameters throws an error.

A cubical anomaly is assumed to be exactly cubic and centered at position (x, y, z) in the grid with specified side length.

To create an empty cubicalAnomaly with all fields set to 0:

a = medium.cubicalAnomaly;

To create a cubicalAnomaly centered at (2.1, 5.5, 9.4):

a = medium.cubicalAnomaly(2.1, 5.5, 9.4);

To create a cubicalAnomaly centered at (2.1, 5.5, 9.4) with side length 0.10:

a = medium.cubicalAnomaly(2.1, 5.5, 9.4, 0.1);

To specify the properties of the anomaly directly during construction of the anomaly object, a property object must first be created. For example, assuming that the tomography methodology is diffuse optical tomography, create a DOTProperty object:

dp = medium.DOTProperty(0.041, 0.9, 100, 'Anomaly');

Next, to create the anomaly with that DOTProperty object as input:

a = medium.cubicalAnomaly(2.1, 5.5, 9.4, 0.1, dp);

encloses()

The encloses method evaluates whether a specified input position is enclosed within the anomaly or not. It returns 1 if the input is enclosed within the anomaly, and 0 if not. This method is called during the grid configuration process by the configure()methods of the various grid classes. This method is primarily used by the grid configure() method and most likely will not need to be called directly. Given h a handle to a sphericalAnomaly object, to see if position (1.2, 3.1, 4.0) is enclosed within the anomaly:

h.encloses(h, 1.2, 3.1, 4.0);

display() and disp()

The display methods are used as follows: given h a handle to a cubicalAnomaly object,

h.display;

h.disp;

sphericalAnomaly

This class defines an anomaly that is spherical in shape. An anomaly is the object of interest that is imbedded within the grid. It has a location, a size, and properties.

Attributes

CenterX – the x-coordinate of the anomaly's center (inherited)

CenterY – the y-coordinate of the anomaly's center (inherited)

CenterZ – the z coordinate of the center of the anomaly (inherited)

radius – length of the sphere's radius

property – a handle to the property type; it defines the properties of this anomaly (inherited)

Location – the center of the spherical anomaly stored as [x y z]

Methods

sphericalAnomaly - class constructor

encloses – evaluate if a given coordinate position is enclosed within the anomoly

disp – method to display class contents (inherited)

display – method to display class contents (inherited)

Usage

spericalAnomaly()

This is the constructor for the sphericalAnomalyclass. The object's identifying tag is set to 'Spherical Anomaly' and the object's fields are initialized based on the number of input arguments. A valid invocation requires 0 or 3 - 5 input parameters. Any invocation with other than these numbers of parameters throws an error.

A spherical anomaly is assumed to be a sphere centered at position (x, y, z) in the grid with specified radius.

To create an empty sphericalAnomaly with all fields set to 0:

a = medium.sphericalAnomaly;

To create a sphericalAnomaly centered at (3.1, 6.5, 8.2):

a = medium.sphericalAnomaly(3.1, 6.5, 8.2);

To create a sphericalAnomaly centered at (3.1, 6.5, 8.2) with radius 0.25:

a = medium.sphericalAnomaly(3.1, 6.5, 8.2, 0.25);

To specify the properties of the anomaly directly during construction of the anomaly object, a property object must first be created. For example, assuming that the tomography methodology being employed is diffuse optical tomography. Create a DOTProperty object:

dp = medium.DOTProperty(0.041, 0.9, 10, 'Anomaly');

Next, to create the anomaly with that DOTProperty object as input:

a = medium.sphericalAnomaly(3.1, 6.5, 8.2, 0.25, dp);

encloses()

The encloses method evaluates whether a specified input position is enclosed within the anomaly or not. It returns 1 if the input is enclosed within the anomaly, and 0 if not. This method is called during the grid configuration process by the configure()methods of the various grid classes. Given h a handle to a sphericalAnomaly object, to see if position (1.2, 3.1, 4.0) is enclosed within the anomaly:

h.encloses(h, 1.2, 3.1, 4.0);

display() and disp()

The display methods are used as follows: given h a handle to a sphericalAnomaly object,

h.display;

h.disp;

property

The property class is the parent class of the other domain-specific property types. It is an abstract base class and should not be allocated directly.

Attributes

proptype – the type of property being defined ('Anomaly', 'Background')

Methods

property – class constructor – throws an error if called

disp – method to display class contents

display – method to display class contents

Usage

display() and disp()

The display methods are used as follows: given h a handle to a property object,

h.display;

h.disp;

DOTProperty

The DOTProperty class defines the computes the mathematical properties of an object being utilized with diffuse optical tomography. Both anomalies and backgrounds may have DOTProperty objects associated with them. Before completing a medium setup it is necessary to define the properties of the medium. These properties are then assigned to the medium. For more information see the mediumsetup class description.

Attributes

mu_a - absorption coefficient

mu_s – scattering coefficient

mu_sp – reduced scattering coefficient

g - mean cosine of the phase function

sigma – computed value of the mathematical property sigma

proptype - type of property ('Anomaly', 'Background') (inherited)

Methods

DOTProperty - constructor

getKSquare – obtain value of mathematical property k2 for a given frequency

getSigma – obtain value of the mathematical property sigma

disp – method to display class contents

display – method to display class contents

Usage

DOTProperty()

The constructor method creates a DOTProperty object. Three or four input parameters are required. Any other invocation is invalid. The primary way by which to call this function is with the reduced scattering coefficient mu_s' as input:

To create an anomaly DOTProperty object with mua = 0.18 and mus' = 10:

dp = medium.DOTProperty(0.18, 10, 'Anomaly');

To create a background DOTProperty object with mua = 0.041, g = 0.9, mus = 100:

dp = medium.DOTProperty(0.041, 0.9, 100, 'Background');

getKSquare()

This method returns the effective value of k2. Two input parameters are expected. Any other invocation is invalid.

To obtain k2 for h a given DOTProperty object with energy speed through the medium c_medium and operating frequency omega:

h.getKSquare(c_medium, om);

getSigma()

This method returns the effective value of sigma for h a DOTProperty object. No input parameters are expected.

h.getSigma;

display() and disp()

The display methods are used as follows: given h a handle to a DOTProperty object,

h.display;

h.disp;

