ECEU574 Wireless Communication Circuits

1. Equivalent Impedance. Consider an ideal transmission line having length ℓ and characteristic impedance Z_{0}. At the load end of the line, a load with impedance Z_{l} is attached. At the source end of the line, it is desired to find an equivalent input impedance for this combination. You may assume that the source has an input impedance of Z_{0}.
a. Find an expression for the total voltage at the source end, $V_{i n}$.
b. Find an expression for the total input current at the source end $I_{i n}$.
c. Find an expression for the input impedance of the line/load combination, $Z_{i n}$.
d. For the special case $Z_{l}=\infty$, is it possible to make $Z_{i n}=Z_{0}$. Explain your reasoning clearly, using the results from part c.
e. For the special case of $Z_{l}=0$, is it possible to make $Z_{i n}=Z_{0}$? Explain your reasoning clearly, using the results from part c.
f. For the special case of $Z_{l}=Z_{0}$, is it possible to make $Z_{i n}=Z_{0}$? Explain your reasoning clearly, using the results from part c.
2. Matching Stub. Consider the transmission line combination in Figure 1. A transmission line with characteristic impedance Z_{0} has a load impedance Z_{l}, as shown in Figure 1. At a length L_{2} before the load end, a second transmission line, having characteristic impedance Z_{0} and shorted at its load end, is attached in parallel as shown. The length of this shorted line is L_{1}. In this problem, you may assume that that Z_{0} is real, and that $Z_{l}=Z_{0}+j X$ for some known reactance X.

Figure 1: Figure for problem 2.
a. Using the results from problem 1, find the equivalent admittance of the transmission line segment of length L_{2} and load impedance Z_{l} at the junction point of the two lines.
b. Using the results from problem 1, find the equivalent admittance of the shorted transmission line segment of length L_{1} at the junction point.
c. Find the equivalent admittance of the combination of these two transmission line segments at the junction point.
d. Find a relationship between L_{1}, L_{2}, and X for which the equivalent admittance is real. Specify the value of this admittance.
e. What is the relationship in part d. for the special case when $L_{2}=0$?
f. Why is the L_{1}-length transmission line segment referred to as a 'matching stub'?

