
Bluetrees—Scatternet Formation to Enable Bluetooth-Based Ad Hoc
Networks

Gergely V. Záruba, Stefano Basagni, and Imrich Chlamtac
Center for Advanced Telecommunications Systems and Services (CATSS)

Erik Jonsson School of Engineering and Computer Science

The University of Texas at Dallas

E-mail:
�
zaruba,basagni,chlamtac�@utdallas.edu.

Abstract— Bluetooth is an open specification for short-range
wireless communication and networking, mainly intended tobe
a cable replacement between portable and/or fixed electronic de-
vices. The specification also defines techniques for interconnecting
large number of nodes inscatternets, thus enabling the establish-
ment of amobile ad hoc network (MANET). While several solutions
and commercial products have been introduced for one-hop Blue-
tooth communication, the problem ofscatternet formation has not
yet been dealt with. This problem concerns the assignment ofthe
roles ofmaster and slave to each node so that the resulting MANET
is connected. In this paper we introduce two novel protocolsfor
forming connected scatternets. In both cases, the resulting topol-
ogy is termed abluetree. In our bluetrees the number of roles each
node can assume are limited to two or three (depending on the
protocol), thus imposing low slave management overhead. The ef-
fectiveness of both protocols in forming MANETs is demonstrated
through extensive simulations.

1 Introduction

It has been widely predicted that Bluetooth [1] will be the ma-
jor technology for short range wireless networks and wireless
personal area networks (WPAN). Because of the expected low
cost of Bluetooth chips (down to 5 USD, according to leading
manufacturers), Bluetooth based networks are expected to be
the preferred solution to build inexpensive but largead hoc net-
works, i.e., multi-hop radio networks whose nodes may all be
mobile. This paper deals with the problem of building ad hoc
networks using Bluetooth technology.

The original idea behind the Bluetooth concept was that of
cable replacement between portable and/or fixed electronicde-
vices. According to the standard, when two Bluetooth devices
come into each other’s communication range, one of them as-
sumes therole of masterof the communication and the other
becomes theslave. This simple “one hop” network is called a
piconet, and may include more slaves. There is no limit on the
maximum number of slaves connected to one master, although
the number ofactive slavesat one time can not exceed 7. If
a master has more than seven slaves, some slaves have to be
parked. To communicate with a parked slave a master has to

“unpark” this while possibly parking another slave.
The standard also allows multiple roles for the same device:

for instance, a node can be a master in one piconet and a slave
in one or more other piconets. This permits the connection of
several piconets: The nodes with multiple roles will act as gate-
ways to adjacent piconets. In the Bluetooth terminology thenet-
work topology resulting by the connection of piconets is called a
scatternet. Theoretically, Bluetooth does not pose limits on the
number of roles that a node can assume. The only restriction
is that at one time one node can be active only in one piconet.
To operate as a member of another piconet, a node has to be
able to switch to the hopping frequency sequence of the other
piconet. Since each switch costs in terms of switching delay,
scheduling, re-synchronization, etc., an efficientscatternet for-
mationprotocol can be one that minimizes the roles assigned
to the nodes, without losing network connectivity. (For a more
detailed overview on Bluetooth the reader is referred to [3]or
directly to the Bluetooth specification [1]).

The problem of organizing ad hoc networks with Bluetooth
devices comes from the Bluetooth specification itself: even
though two nodes may be physically able to receive each other
transmissions, they cannot communicate if they are not in the
same piconet at the same time (one assuming a master the other
a slave role). Thus with respect to the generic ad hoc technol-
ogy, where two nodes can communicate if their distance is less
than their transmission radii, in building Bluetooth scatternets
attention has to be paid to choosing masters and slaves so that
the network connectivity is maintained.

A scatternet is visualized in Figure 1. Given the network
topology graph obtained according to the generic ad hoc net-
work technology, a direction is assigned to those links, that rep-
resent an established master slave relation. The arrows point
from masters to slaves: A node that has an out-degree of� � �
is the master of a piconet consisting of� slaves. A node with
an in-degree of� � � is a slave in� piconets. The directed
links are the only links that will be used in the Bluetooth scat-
ternet, i.e., non-directed links in the figure will not be available
for communications, namely, some of the network connectivity
is lost. (Note that the direction on the edges does not define a
one-way communication: it is only used to depict master-slave

Figure 1: A Scatternet.

relations among nodes.)
The problem of Bluetooth scatternet formation has the pri-

mary aim to decide about the roles among the Bluetooth de-
vices so that the resulting scatternet enables multihop commu-
nication between two arbitrary devices. A goal in differentscat-
ternet formation algorithms is to minimize the overheads intro-
duced by Bluetooth’s piconet and scatternet based master slave
approach. This problem has not been investigated in depth so
far. In general, most of the papers published about Bluetooth
only consider piconets (see, e.g., [3]), and the problem of scat-
ternet formation is not addressed at all. Scatternet formation
has been briefly illustrated in [6], where the authors consider
randomly generated topologies of Bluetooth nodes and investi-
gate the trade-off between routing efficiency and link numbers.
They do not consider piconet switching times, while the ran-
dom selection does not have a constraint on the number of roles
assumed by nodes.

In this paper we introduce two protocols for scatternet for-
mation considering role and link limitations. Both solutions are
tailored to Bluetooth functionality and are distributed, i.e., they
are executed at each node based only on the knowledge of the
node’s immediate neighbors.

The first algorithm is based on a designated node, the “blue-
root,” that initiates the construction of a “bluetree,” i.e., the re-
sulting scatternet topology will be a tree that spans the entire
network. In this solution, the number of roles assigned to one
node is limited to two, i.e, a node can be only a master, a slave,
or the slave in two different piconets or a master in a piconetand
a slave in an adjacent piconet. This protocol is also extended to
cope with a limitation on the number of slaves controlled by
one master to reduce parking related overhead. Simulation re-
sults of networks with up to 2000 nodes show the relation of the
obtainedbluerouteswith respect to the optimal (shortest path
based) case evaluated on the network topology graph.

The second algorithm speeds up the scatternet formation pro-
cess by selecting more than one root for tree formation, and then
merging the trees generated by each root. The protocol is orga-
nized in two phases. In the first phase, a subset of the nodes will
be selected asinit nodesthat initiate the construction of sub-
trees, similarly to the first algorithm. We show via simulation

that the set up time for the sub-trees has a strong dependenceon
the network density, and is not significantly influenced by the
network population. In the second phase, the protocol merges
the generated sub-trees into one scatternet that spans the entire
network.

The paper is organized as follows. In Section 2 we describe
the proposed algorithms in details, while Section 3 presents the
simulation results. Finally, Section 4 concludes the paper.

2 Bluetrees–Scatternet Formation

In this section we detail the two protocols for the formationof
Bluetooth scatternets from a networks of Bluetooth nodes that
are placed randomly in a given geographic region. We consider
networks with low node mobility (coping with mobility is the
subject of on-going and future research).

Both solutions assume that each node, upon terminating its
boot procedure, is aware of the number and identities (i.e.,the
Bluetooth address) of each of its neighbors. Thus, during the
boot process, nodes spend enough time inquiring and respond-
ing to inquiries to discover all their neighbors.

Throughout the rest of the paper, by “geographically con-
nected” network, we intend the networks obtained accordingto
the generic ad hoc technology, where two nodes are neighborsif
that they are within each other transmission range, and there is
at least one path between any two nodes in the network. We use
this definition to compare our solutions to the solution obtained
with such a generic technology.

2.1 Blueroot Grown Bluetrees

Theorem 1 (Bluetooth Trees)Every network that is geo-
graphically connected admits at least one corresponding con-
nected Bluetooth scatternet, where the number of roles assigned
to nodes are limited to at most two per node (i.e., each node is
one of

�� � � � �� � ��).
The proof of this theorem comes from the algorithm de-

scribed below:
The first protocol is initiated by a given, single node, called

the theblueroot, which will be the root of thebluetree. The
protocol is described in the following way.

Let us select an arbitrary node� (i.e., the blueroot). Using
the network topology graph, we build a rooted spanning tree
with root �. The root will be assigned the role of master (

�
).

Every one-hop neighbor of� will be a slave (
�

) in the piconet
of �. This is depicted by drawing a directed link from� to its
“children.” The children of� will now be assigned an additional
role

�
and all their neighbors that are not assigned any roles

yet will become slaves
�

of these newly selected masters. This
procedure is repeated recursively till the “leaves” of the tree
are reached (these nodes will only be slaves). We stipulate that
when a node which has not been assigned a role yet and is the
neighbor of more than one master, it affiliates with the master
whose page reached it first. In this scenario, each node can only

have one
�

role, two
�

nodes can not be directly connected to
each other, and all

�
and

� �
nodes have only one master that

controls them.
Scatternets formed by following the proposed algorithm can

be depicted as directed trees rooted from the given blueroot. A
bluetree corresponding the the topology graph of Figure 1 is
depicted in Figure 2 (the squared node is the blueroot).

Figure 2: A Rooted Bluetree

In the following we describe the formation rule stated above
according to the Bluetooth specification.

2.1.1 Bluetree Formation

It is assumed that each node knows: 1) whether or not it is the
blueroot, 2) what are the identifiers of its one hop neighbors,
and 3) whether they are part of a piconet already.

If a node is the blueroot, it starts paging its neighbors one by
one. This implies that the blueroot will be a master. If a node
is paged and it is not part of any piconet yet, it accepts the page
thus becoming the slave of the paging node. Otherwise, it will
either not respond to the page or it may respond and immedi-
ately after having informed the paging node that it is “already
taken” it disrupts the communication. This procedure is recur-
sively repeated till all nodes are assigned to a piconet: once a
node has been assigned the role of slave in a piconet, it initiate
paging all its neighbors one by one, and so on.

2.1.2 Properties of Bluetrees

Most of the distributed algorithms for finding a spanning tree
in a network, whether wired or wireless [2] work by creating
tree segments over the vertices and expanding these segments
(possibly by interconnecting them) until the whole set of ver-
tices is spanned by one tree. Since most vertices do not have
the knowledge on which edge leads to a common root vertex,
they cannot establish the correct master-slave setup (the edges
cannot be directed in a top-down way.

Routing in rooted bluetrees can be performed in the follow-
ing way. Once a node realizes that it is a leaf (only slave role),
it informs its master about it. Thus, masters can maintain next-
hop routing tables with entries of all the descendants in thecor-
responding subtree. The routing table of a master is then sent
“upstream” on the tree to the master’s master, which enlargethe

table with information related to its own children and pass it to
its master, and so on till the blueroot is reached. When routing
packets, nodes examine their routing tables. If the destination
is in their table, then the packet is routed towards the corre-
sponding slave, otherwise the packet is forwarded to upward,
to this node’s master. Since the blueroot has information about
all the nodes in the network the packet will eventually reachits
intended destination.

2.2 Limiting the Number of Slaves

By building the bluetree as described above, it can happen that a
master is assigned too many slaves. Since the a master can only
control � active slaves, this can introduce excessive overhead
and delays. In this section, by using a simple geometric obser-
vation we reconfigure the obtained bluetree so that it satisfies
any limit in the number of slaves greater than�.

Observation: In an open, interference- and obstacle-free envi-
ronment, if a node� has more than five neighbors, then there
are at least two nodes among these neighbors that are neighbors
themselves.

The geometric basis of our observation is the following. If a
node� has more than five neighbors, let us arbitrarily select six
among them. The “worst case” placement of the nodes is when
they form a perfect hexagon on the edge of the transmission
radius� of node� . In perfect hexagons adjacent corners are of
the same distance� as corners from the middle point. Since the
transmission radius of all nodes is�, the nodes in the hexagon
next to each other are neighbors.

This observation can be used to reconfigure the bluetree so
that each master has no more than� � � slaves. The follow-
ing algorithm is executed at each node until all nodes satisfy the
slave constraint. If a master� has more than� slaves, then it
can be sure that at least two of this slaves could have a possi-
ble link between them. The master can poll the slaves to find
out the identifiers of their neighbors, and to find out how many
slaves they handle themselves. Using this information the mas-
ter can select two of its slaves��, and �� so that they can be
connected. The selection can also consider�� as the node that
has the fewest number of slaves from the applying set. Then��
can be instructed to establish connection with�� being its mas-
ter (� can provide the clock offset to speed up paging), while
�� is instructed to discontinue the connection to� and wait for
the page of��. After each such branch reorganization step the
resulting topology retains the bluetree properties and allmasters
will have at most� slaves.

As it is clear form the above description, the proposed pro-
tocol and its variation are very simple, adapt naturally to Blue-
tooth constraints, incur minor overhead both for local computa-
tion and transmissions, and produce a scatternet that is ready to
be use as a backbone to disseminate information throughout the
network.

2.3 Distributed Bluetrees

In this section we further distribute the tree formation protocol,
saving on set-up time and avoiding the a priory designation of
the blueroot. As for the protocol described above, this proto-
col achieves network connectivity while maintaining a limited
number of roles per node. In particular, each node has roles
assigned from the set

�� � � � �� � � � �� � � � �� � � ��.
The first step in our algorithm is to selectinit nodesamong

the population in a distributed manner. To select the init nodes,
the information on whether or not a node has the highest iden-
tifier in its neighborhood can be used: if a node is surrounded
only by smaller id nodes, it elects itself as an init node. Theinit
nodes then initiate the bluetree building procedure described
in the previous sections, with the following modifications:1)
when a piconet connection is established, the slave will be in-
formed about the identifier of the root of the tree; 2) when
paging neighboring nodes which are already part of a bluetree,
information on respective roots has to be exchanged. The in-
formation collected by these two modifications will be used
in the second phase of the algorithm. At the end of the first
phase, the network topology graph will be spanned by disjunct
but adjacent trees, with each node having roles from the set:�� � � � �� � ��.

For the second phase a procedure is sought, that connects
these sub-tree scatternets into one scatternet spanning the entire
network topology graph. The same algorithm needs to ensure
that no node will violate the number of roles constraint. We
designate one of the scatternets as the root of the final phase.
We can map each sub-tree by a node in a virtual graph and pos-
sible edges between sub-trees as edges in this graph. We can
run the bluetree algorithm on this virtual graph, to connectall
virtual vertices. In the real graph that would result in a con-
nected network. Also, nodes in this virtual graph could onlyre-
ceive an additional

�
,
�

or
� �

role, so the final role set could
be calculated by multiplying this set with itself, resulting in:�� � � � �� � � � �� � � � �� � � �� (note, that

�� � � � �
). The

information collected in the first phase can be used to decideon
the links to be activated between sub-trees. Data exchange in the
sub-trees becomes necessary in order to handle these sub-trees
as virtual vertices. s With this distributed bluetree procedure,
we pay the increased robustness and distribution in terms of
overhead in the second phase. Figure 3 shows a possible scatter-
net created with the second algorithm. The squared nodes rep-
resent highest identifier nodes in their respective neighborhood,
and outlined arrows depict master-slave behavior established by
the second phase.

3 Simulation Results

Our C++ based simulator operates on graphs representing net-
works. Great effort has been put fort matching our simulator
to the expected behavior of Bluetooth units (e.g., the BFST al-
gorithm is not implemented synchronously but has random dis-
tributed behaviors). The first step in all our simulations was to

Figure 3: Combined Distributed Bluetrees

create geographically connected random networks by spreading
nodes uniformly over an area limited by coordinates

��
and��

, while keeping the “transmission radius” of nodes constant.
To obtain results for different network populations� , and dif-
ferent densities� , the parameters

��
,
��

and� are used as
simulation inputs.

We show results on the average distances (or routes) of the
first bluetree algorithm (� �) compared to the minimal average
distances(� �). The minimal distances were calculated using a
shortest path algorithm on the network topology graph. The
� � and � � values are used to calculate average route errors�	
 � � � � � � between nodes. Figure 4 displays ARE plots
for bluetree scatternets, with no limit on the number of slaves
connecting to a master. As it can be predicted, forcing a limit
on the number of slaves will result in higher ARE values.

0
500

1000
1500

2000

0

10

20

30

40

50
0

5

10

15

A
ve

ra
ge

 R
ou

te
 E

rr
or

Number of NodesAverage Degree

Figure 4: Average Route Error (No Limit)

Figure 5 plots ARE values when the number of slaves is lim-
ited to 7 slaves. In our simulations ARE curves were almost
identical for limits� to �, thus figures on lower limits are omit-
ted. Comparing the curves to the not limited scenario one can
observe a significant change ARE: the ARE can be twice as
much in a limited case, while the function surface changes di-
rection and increases radically with the average nodal degree.
Limiting the slaves results in a stronger dependence on the pop-
ulation.

In the distributed bluetree algorithm it is obvious that the

0
500

1000
1500

2000

0

10

20

30

40

50
0

5

10

15

20

25
A

ve
ra

ge
 R

ou
te

 E
rr

or

Number of NodesAverage Degree

Figure 5: Average Route Error (Limit = 7)

speed up factor is proportional to the number of init nodes, i.e.,
the more init nodes among the population, the more distributed
the algorithm will be. We show simulation results on how many
init nodes there are in the networks. Figure 6 gives a surface
view on the shape of such a curve with the population and the
density on the� and� axes. In Figure 7 actual values can be
read for different network sizes with nodal degrees of�

� �� �
�
�
.

The curves in Figure 7 are quasi-linear in� with zero offset,
implying that in an average network the duration of the first
phase will not be significantly influenced by the total numberof
nodes, just by the network density. With other words, in aver-
age, the duration of the first phase of the algorithm will be the
same no matter how big the network is. Another observation
can be made by looking at the influence of� to the curves: it
will be always more time efficient to run the algorithm’s first
step on a sparse network. Although the second phase is ex-
pected to be faster if the network is more dense. In large net-
works, the formation time will be dominated by the run time
of the second phase of the algorithm. Since in the second phase
the bluetree algorithm operates on trees and not nodes like in the
first algorithm, the second algorithm is expected to be faster for
large networks, with a factor proportional to the average subtree
size. The average subtree size is the inverse of the curve slopes
in Figure 7.

0
500

1000
1500

2000

0

10

20

30

40

50
0

50

100

150

200

250

300

A
ve

ra
ge

 N
um

be
r

of
 In

it
N

od
es

Number of NodesAverage Degree

Figure 6: Average Number of Init Nodes - 3D

All our simulations have been completed with confidence

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

Number of Nodes

A
ve

ra
ge

 N
um

be
r

of
 In

it
N

od
es

D=5

D=20

D=25

− − −

. . . .

Figure 7: Average Number of Init Nodes - 2D

levels above��� , while keeping the error margin below�� .

4 Conclusions

The Bluetooth standard enables the formation of scatternets,
with which mobile ad hoc networks (MANETs) may be estab-
lished. In this paper we presented two protocols to solve the
problem of scatternet formation. To the best of the authors’
knowledge, these are the first two attempts proposed for solv-
ing this problem.

The first protocol organizes the Bluetooth nodes into a rooted
tree, the bluetree, in which each node participates at most two
piconets, reducing piconet switching overhead. Our solution
also considers the problem of limiting the number of slaves that
each master has to control. Simulation results in this case show
that the average route ratio is dominated by the density and not
significantly influenced by the population size. We presented a
second protocol with a more distribute behavior. Using simula-
tion we have demonstrated that in a large population of nodes
the speed of the formation procedure outperforms that of the
first one. In the second solution the piconet switching overhead
is still well contained, since each node is allowed to assumeat
most three roles.

References
[1] Bluetooth SIG, Bluetooth Baseband Specification Version 1.0B,

http://www.bluetooth.com

[2] R. Gallager, P. Humblet, P. SpiraA Distributed Algorithm for Minimum
Weight Spanning Trees, ACM Transaction on Programming Language and
Systems, pp. 66-77, Vol. 4, No. 1, January, 1993

[3] J.C. Haartsen,The Bluetooth Radio System, IEEE Personal Communica-
tions, pp. 28-36, Vol.7, February, 2000

[4] Homepage of the IEEE 802.15 WG,Working Group for Wireless Personal
Area Networks, http://grouper/ieee.org/groups/802/15/

[5] Internet Engineering Task Force, MANET WG Charter,
http://www.ietf.org/html.charters/manet-charter.html

[6] Gy. Miklós, A. Rácz, Z. Turányi, A. Valkó, P. Johansson, Performance As-
pects of Bluetooth Scatternet Formation, poster section of MobiHoc 2000,
Boston, August 2000

