G 364: Mobile and Wireless Networking CLASS 3, Mon. Jan 12 2004 Stefano Basagni Spring 2004 M-W, 11:40am-1:20pm, 109 Rob

MAC for Specific Architectures

Centralized MAC Protocols

- Cellular telephony: Predominant form of wireless systems
- Wireless ATM: Broadband multimedia
- services
- Ad Hoc MAC Protocols
 - Wireless MAC protocols specifically designed for ad hoc networks

Ad Hoc MAC Protocols

۲	Three categories = three different channel
	access strategies
1.	Contention protocols
	 Use direct competition for access right
	 Collisions are resolved by retransmissions
	 Mostly asynchronous
2.	Allocation protocols
	 Synchronous
	 Mapping of the nodes to the slots (scheduling)
3.	Hybrid protocols: Combination of 1. and 2.

Contention Protocols

Direct competition for accessing the wireless channel Retransmissions when collision occur Examples: Aloha, CSMA Asynchronous model (except slotted Aloha) Good at low network loads Classification based on collision avoidance Aloha: No collision avoidance

Busy-Tone MA (BTMA)

- Bandwidth is divided into two separate channels
 - Data channel
 - Bigger, for data packet TX
 - Control channel
 - TX a busy-tone signal = presence of activity in the data channel

BTMA: Operations, 1

Source node checks the control channel for a busy-tone Idle \rightarrow TX • Busy \rightarrow reschedule TX for later Any node that detects activity on the data channel transmits a busy-tone on the control channel

BTMA: Operations, 2

TX-D

Hidden node problem is lowered

Node C is prevented to access the channel

TX-C

R

Exposed nodes are many (underutilization of the channel)

Receiver-Initiated BTMA

Decrease the problem of exposed nodes Only the destination nodes transmit the busy-tone in the control channel A node have to know if it is the destination \rightarrow must monitor the data TX Takes time and collision may occur

Wireless Collision Detect (WCD)

Combines BTMA and RI-BTMA: Two distinct busy-tone signal on the control channel

 Any node that detects activity on the data channel transmits a busy-tone on the control channel

Only the destination keeps doing it

Busy-Tone Solutions

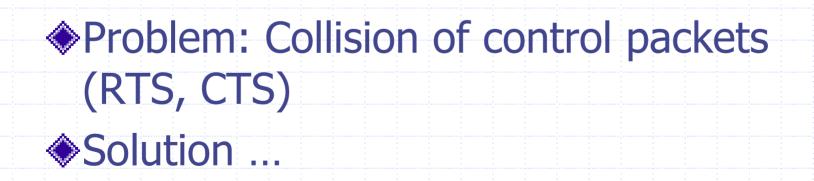
Simple concept

Extra hardware: TX and RX on the data

and control channel at the same time

No hardware switching time

Performance: WCD > RI-BTMA > BTMA


1/12/2004

MA with Collision Avoidance (MACA), 1

- Handshaking dialogue = RTS + CTS
 - Lower hidden nodes interferences
 - Minimize exposed nodes
- Request-To-Send
 - From source to Destination
- Clear-To-Send
 - From destination to source

MACA, 2

D

CTS-A

B

С

RTS-B

Α

1/12/2004

MACAW = MACA + CS

Carrier Sensing for collision of RTS/CTS
 Positive ACK for recovering lost packets
 ACKs can suffer collisions

- Source that expect ACK transmits a Data
 - Sending (DS) packet to alert exposed
 - nodes

MACA + Piggyback Reservation (MACA/PR), 1

- MACA plus channel reservation
 - (QoS applications)
- Channel reservation table (RT)
- RT contains reservation made by neighbors

Overhead: Nodes exchange RTs

MACA/PR, 2

- 1. Source \rightarrow RTS/CTS for reservation
- 2. Source sends a Real Time packet with a time interval in the header
- 3. Destination sends an ACK carrying the time interval
- Neighbors of the destination → Note the time interval in their RTs

MACA By Invitation: MACA-BI

Reverse the RTS/CTS process

 Destination sends a "Request-to-Receive" (RTR) to receive from a specific source

Source transmits the packet

Problems:

- Predict which source wants to transmit
- Overhead to maintain neighbor list and their traffic patterns

Big Question ...

What is the best protocol?

- Research is based on
 - Scenarios
 - Tradeoffs
 - Demonstration of protocols via simulations
 - (Analysis ...)

Allocation Protocols

- Computation of SLOT schedule
- 1. Static allocation protocols
 - Centralized algorithm
 - Schedule is computed and given to nodes prior to node operations
- 2. Dynamic allocation protocols
 - TX schedules are computed on-demand

Static Allocation Protocols

Global parameters as input

- Number of nodes n
- Maximum nodal degree Δ
- "Classic" TDMA
 - Frame with n slots
 - One node $\leftarrow \rightarrow$ one slot (always the same)
 - No collision ever (unicast, multicast)
 - Delay is bounded by the frame length
 - Poorly scalable

Time-Spread MA

One node has multiple slots in a frame Collision can occur, BUT One slot is collision-free Which one we do no know: Success is spread in time (hence TSMA) Frame length L scales logarithmically with n $\blacksquare L \in O(\Delta^2 \log^2 n / \log^2 \Delta)$


Assignments

Wireless MAC handout, to page xix

Updated information on the class web page:

www.ece.neu.edu/courses/eceg364/2004sp

