G 364: Mobile and Wireless Networking CLASS 22, Wed. Mar. 31 2004 Stefano Basagni Spring 2004 M-W, 11:40am-1:20pm, 109 Rob

Logical vs. Physical Channels

Logical channels

(traffic channels, signaling (=control) channels)

Physical channels (FDMA/TDMA)

Physical channels

- Time slots @ given frequencies
- Issues: modulation, slot synchronization, multiple access techniques, duplexing, frequency hopping, etc
- Logical channels
 - Built on top of physical channels
 - Issue: which information is exchanged between MS and BSS

3/31/04

GSM Logical Channels

	and the second	and the second secon	
Traffic channel (TCH)	TCH/F	TCH full rate	MS←→BSS
	TCH/H	TCH half Rate	MS←→BSS
Broadcast channel	BCCH	Broadcast control	BSS→MS
(same information to all MS in a cell)	FCCH	Frequency Correction	BSS→MS
	SCH	Synchronization	BSS→MS
Common Control channel (CCCH)	RACH	Random Access	MS→BSS
(point to multipoint channels)	AGCH	Access Grant	BSS→MS
(used for access management)	РСН	Paging	BSS→MS
Dedicated Control channel (DCCH)	SDCCH	Stand-alone Dedicated control	MS←→BSS
(point-to-point signalling channels)	SACCH	Slow associated control	MS←→BSS
(dedicated to a specific MS)	FACCH	Fast associated control	MS←→BSS
3/31/04			3

Power Control

First operation when MS turned ON: spectrum analysis

(either on list of up to 32 Radio Frequency Channel Numbers of current network) (or on whole 124 carriers spectrum)

3/31/04

Tuning

MS listens on strongest beacon for a pure sine wave (FCCH)

- Coarse bit synchronization
- Fine tuning of oscillator

Immediately follows SCH burst

- Fine tuning of synchronization (64 bits training sequence)
- Read burst content for synchronization data
- Finally, MS can read BCCH (Broadcast Control CHannel)

Paging, 1

Paging

 Needed to wake-up MS from IDLE state when incoming call arrives to MS

MS asks for a channel

▲ 1) paging —
 MS — 2) Random access → BSS/MSC

← 3) Channel assignment -

Paging channel:PCHPAGCHCCCHAccess Grant Channel:AGCHPAGCHCommon ControlRandom Access Channel:RACHCHannel

3/31/04

Paging, 2

- Paging message generated by MSC (receives incoming call)
- Transferred to subset of BSC
 - Paging limited to user's location area
 - Paging message contains:
 - List of cells where paging should be performed
 - Identity of paged user
- Paging message coded in 4 consecutive bursts over the air interface

Paging for more MSs may be joined in one unique paging message

Access Signaling, 1

Access Signaling, 2

GSM Mobility Management

- Major task: Update the location of a MS (for delivering incoming calls)
- A mobile service area is partitioned in Location Areas (LAs)
- LA is a group of Base Transceiver Stations (BTSs)
- Mobility management = location tracking/update of the MS from an LA to another

GSM System Hierarchy MSC region

Hierarchy:

MSC region \rightarrow n x Location Areas \rightarrow m x BSC \rightarrow k x BTS

3/31/04

12

Location Update

Called registrationInitiated by MS:

- BTSs broadcast their LA address to the MS
- If LA AD is different from the one with the MS, MS send a registration message to the network (signaling: Chapter 10)
- Location information about the current LA of a MS is stored in HLR (permanent) and VLR (temporary)

GSM Mobility Databases

Two main issues

- Fault tolerance: Need for failure restoration procedures, especially for HLR
- Database overflow: The VLR may overflow (MSs move "en masse" to its controlled area). Causes failure of registration, i.e., the user cannot be provided service (VLR overflow)

GSM Basic Location Update

Location update procedures handle:

- Inter-LA movements
- Inter-MSC movements
- Inter-VLR movements (no overflow is considered for the moment)

MS cannot distinguish between types of movement (same format of messages)

Inter-LA Movements

MS moves from LA1 to LA2 (Figure 11.2) Nine message exchanges between MS and MSC + ten between MSC and VLR (GSM 4.08)

Four major steps

Inter LA: Step 1

MS requires a location update (LU) to MSC via BTS Message includes: current LA address, MSC and VLR (last two are the same) + MS TMSI (temporary mobile system identity)

Inter-LA: Step 2

MSC forward the LU request to VLR via a TCAP message (signaling, SS7) TCAP includes Address of the MSC TMSI of the MS Previous LA identification (LAI) Target LAI

Inter LA: Steps 3 and 4

VLR notices that LA1 and LA2 belong to the same MSC

VLR updates the temporary LAI entry

for MS

VLR acknowledges the MS via the MSC

Inter-MSC Movements

The two LAs belongs to two different MSCs of the same VLR (Figure 11.3) Six steps procedure Step 1 and 2: The LU request is sent by the MS to the network as for the Inter-LA movement case

Inter-MSC: Step 3

VLR notices that LA1 belongs to MSC1 and that LA2 belongs to MSC2 \neq MSC1 VLR updates the LAI and MSC field of the MS record and derive the HLR address from its recorded IMSI VLR sends a message to HLR that includes IMSI of MS, address of MSC2, address of VLR, +

Inter-MSC: Steps 4, 5 and 6

Step 4 HLR identifies MS (via IMSI) MS record is updated (new MSC) Ack is sent to VLR Steps 5 and 6 Ack is sent to MS

Inter-VLR Movements

The two LAs belongs to MSCs connected to different VLRs (Figure 11.4)Without considering authentication, we have a 8 step procedure Step 1: LU request is sent from MS to VLR2 (as for Inter-LA movements)

Inter-VLR: Steps 2 and 3

VLR2 does not have an entry for MS (the IMSI of the MS is not known)

The LU request contains the address of VLR1

VLR2 sends a message to VLR1 with the received TSMI

VLR1 sends IMSI of MS to VLR2 (difference with IS-41 where IMSI is sent over the air)

Inter-VLR: Steps 4 and 5

VLR2 creates a record for MS Sends a registration message to HLR (step 3 of Inter-MSC case) HLR updates record of MS, included the entry for the new VLR HLR sends an ack back to VLR2

Inter-VLR: Steps 6, 7 and 8

 Step 6: VLR2 generates a new TMSI and sends it to the MS
 In GSM the TMSI is changed periodically to avoid fraudulent use
 Steps 7 and 8: The obsolete record of the MS in VLR1 is deleted

Basic Call Origination

- Call origination is a four steps process (Figure 11.5)
- Step 1: MS sends a call origination request to MSC
- Step 2: MSC forwards the request to VLR (signaling)
- Step 3: VLR checks the "u1"'s profile and messages the MSC to grant the call request
- Step 4: The MSC sets up the trunk (PSTN call setup procedure)

Basic Call Termination, CT

Call termination to a GSM subscriber is a six steps process (Figure 11.6) that requires routing information from the serving VLR

Step 1: When the MS ISDN number (MSISDN) is dialed by a PSTN user, call is routed to a GMSC by SS7

CT, Steps 2 and 3

- Step 2: GMSC interrogates HLR for routing information
- Message includes MSISDN +
- Step 3: HLR asks the VLR for the MS roaming number (MSRN)
- Message include IMSI, MSC number +
- The MSC number is updated by the Inter-MSC and Inter-VLR procedure and it is needed for setting up the trunk

CT, Steps 4, 5 and 6

Step 4: VLR creates MSRN by using the MSC number stored with the MS information

Step 5: MSRN is sent to GMSC via HLR
 Step 6: MSRN provides address of MS's MSC

SS7 message is sent by the GMSC to the MS's MSC to set up the trunk

Assignments

Read chapters 10 and 11 of the

textbook

Updated information on the class web

page:

www.ece.neu.edu/courses/eceg364/2004sp