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Exercises in Preparation to the Midterm

� Problem # 1. Write two functionssumma andsummaRec, one iterative and one recursive, that given
as input an array ofN integer numbers returns the sum of the “even elements” of thearray (i.e., the
elements whose position is even, such as the 0th element of the array, the 2nd, the 4th and so on).

Possible solutions are given by the following function:

int summa( int E[], int N ) {
int sum = E[ 0 ];
for( int i = 2; i < N; i += 2 )

sum += E[ i ];
return sum;

}

int summaRec( int E[], int i ) {
if ( i == 0 )

return E[ i ];
else

return E[ i ] + summaRec( E, i - 2 );
}

In the case of the recursive version the call frommain should be eithersummaRec( A, n - 1 ) (n
odd) orsummaRec( A, n - 2 ) (n even), where A is the given array andn its size.

� Problem # 2. True or False. Write eitherT or F at the right of each expression.

1. n
�

3 � Ω�n� T

2. n
�

3 � O�n2�. T

3. 2n�1 � O�n� 1�. F

4. 2n�1 � Θ�2n �. T

5. ∑n
i�1 ih � O �nh�1�, h � 0. T

The first four questions can be proven by definition, i.e., producing the required constants. The fifth
one can be proven by induction onh. The induction base case (h � 0) is easily verified:∑n

i�1 i0 �
∑n

i�1 1 � n � O�n1� � O �n�. Let us assume that the limitation holds for a generich 	 0, and let us
consider a summation up toh

�
1:

n

∑
i�1

ih�1 �
n

∑
i�1

ihi 

n

∑
i�1

ihn � n
n

∑
i�1

ih �

Since, by inductive hypothesis, is∑n
i�1 ih � O�nh�1� we have that∑n

i�1 ih�1 � O�nh�2�.



� Problem # 3. Write a recursive C++ procedure to compute the maximum among then elements of
an array of integers according to a “balanced” divide and conquer technique, i.e., at any recursive call
the search range in the array should be halved.

The following is a possible solution. (The solution makes use of the C++ functionmax from the library
algo.h that returns the maximum between two numbers.)

int maxDC( int l, int r, int A[] ) {
if ( r - l <= 1 )

return max( A[ l ], A[ r ] );
else

return max( maxDC( l, ( ( l + r ) / 2 ), A ),
maxDC( ( ( l + r ) / 2 ) + 1, r, A ) );

}

The time complexity of the function is expressed by the following recursive equation.

T �n� � 2T �n
2
� � 1

with base caseT �1� � 1. This recursive equation can be solved by repeated substitutions.

T �n� � 2T �n
2
� � 1

� 2�2T � n
22 � � 1� � 1

� 22T � n
22 � � 2

�
1

� 22�2T � n
23 � � 1� � 2

�
1

� 23T � n
23 � � 22 � 2

�
1

� � � �
� 2kT � n

2k
� � 2k�1 � � � � � 22 � 2

�
1

The sum 2k�1 � � � � � 22 � 2
�

1 is a particular case of the geometric series

m

∑
i�0

qi � qm�1 � 1
q � 1

�

Hence, whenq � 2 it is 2k�1� � � �� 22� 2
�

1� 2k �1, andT �n� � 2kT � n
2k � � 2k �1. Whenk � logn,

remembering thatT �1� � 1, we have:

T �n� � 2kT � n
2k � � 2k

� 1

� 2lognT � n
2logn � � 2logn

� 1

� nT �1� � n � 1 � O�n� �
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� Problem # 4. Write anoptimal C++ function that, given an integern � 0, prints out all powers of 5
up ton.

A lower bound to the problem is given by the number of powers of5 that are printed out (any algorithm
that solves this problem must print them). Givenn � 0, the powers of 5 that are
 n are:

1�5�52 � � � � �5k 
 n �

and they arek 
 log5n. Thus, a lower bound for the problem isΩ�logn�.
The following function solves the problem.

void fifthPower( int n ) {
int power = 1;
while ( power < n + 1 ) {

cout << power << " ";
power *= 5;

}
}

Since the while loop is executedΘ�logn� times, the given function is optimal.

� Problem # 5. Prove that
�
logn� � O�n�.

The proof proceeds by definition, i.e., we have to show that there exist two constantc 	 0 andn0 	 0
such that

�
logn� 
 cn for eachn � n0. By looking at

�
logn� for small values ofn it appears that for

all n � 1,
�
logn� 
 n. The proof that this holds for everyn � 1 is by induction onn. The claim is

certainly true forn � 1,
�
log1� � 0 � 1. Now, suppose thatn 	 1, and that (induction hypothesis)�

log�n � 1�� 
 n � 1. Then,

�
logn� 
 �

log�n � 1�� � 1


 �n � 1� � 1(by inductive hypothesis)

� n �

Hence, we can takec � 1 andn0 � 1.
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