G205
Fundamentals of Computer Engineering
CLASS 7, Wed. Sept. 29 2004
Stefano Basagni
Fall 2004
M-W, 1:30pm-3:10pm
Sorting in Linear Time

- We cannot go faster than $\Omega(n)$
- Must be a non-comparison sorting
- Works when assumptions on the number to be sorted are made
 - Counting sort \rightarrow numbers in $\{0,1,...,k\}$
 - Radix sort \rightarrow numbers with a constant number of digits
 - Bucket sort \rightarrow numbers drawn from a uniform distribution
Counting Sort, 1

- Numbers are integers in \{0,1,\ldots,k\}
- INPUT: \(A[1\ldots n]\), \(A[j] \in \{0,1,\ldots,k\}\) for all \(j=1,2,\ldots,n\). Array \(A\) and values \(n\) and \(k\) are given as parameters.
- OUTPUT: \(B[1\ldots n]\), sorted. \(B\) is assumed to be already allocated and is given as a parameter.
- Auxiliary storage: \(C[0\ldots k]\)
Counting Sort, 2

Counting-Sort(A,B,n,k)
for i=0 to k do C[i] = 0
for j=1 to n do C[A[j]]=C[A[j]]+1
for i=1 to k do C[i]=C[i]+C[i-1]
for j=n downto 1 do
 B[C[A[j]]]=A[j]
 C[A[j]]=C[A[j]]-1
Counting Sort, Example

- INPUT: \(A = 2_1, 5_1, 3_1, 0_1, 2_2, 3_2, 0_2, 3_3 \)
- OUTPUT: \(B = 0_1, 0_2, 2_1, 2_2, 3_1, 3_2, 3_3, 5_1 \)
- Counting-Sort is STABLE: keys with same value appear in same order in output as they did in input (because of how the last loop works)
- Analysis: \(\Theta(n+k) \), which is \(\Theta(n) \) if \(k \) is in \(O(n) \)
Radix Sort

Key idea: Sort least significant digit of each number first

To sort d digits:

Radix-Sort(A, d)
for i = 1 to d do
use a stable sorting to sort array A on digit i
Radix Sort, Example

<table>
<thead>
<tr>
<th>329</th>
<th>720</th>
<th>720</th>
<th>329</th>
</tr>
</thead>
<tbody>
<tr>
<td>457</td>
<td>355</td>
<td>329</td>
<td>355</td>
</tr>
<tr>
<td>657</td>
<td>436</td>
<td>436</td>
<td>436</td>
</tr>
<tr>
<td>839</td>
<td>457</td>
<td>839</td>
<td>457</td>
</tr>
<tr>
<td>436</td>
<td>657</td>
<td>355</td>
<td>657</td>
</tr>
<tr>
<td>720</td>
<td>329</td>
<td>457</td>
<td>720</td>
</tr>
<tr>
<td>355</td>
<td>839</td>
<td>657</td>
<td>839</td>
</tr>
</tbody>
</table>
Radix Sort: Correctness

- Induction on number of passes (i in pseudo-code)
- Assume digits 1, 2,..., i-1 are sorted
- Show that a stable sort on digit i leaves digits 1, 2,..., i sorted
 - If two digits in position i are different ordering by position i is correct (other digits are irrelevant)
 - If the digits are the same, numbers are already in the right order (ind. hyp.)
Radix Sort, Analysis

- Use Counting Sort as stable sorting
- $\Theta(n+k)$ per pass
- d passes
- $\Theta(d(n+k))$ total
- If k is in $O(n)$ the $T_{RS}(n)$ is in $\Theta(dn)$
- When d is $\Theta(1)$ Radix Sort is linear time
How to break a number into digits

- n b-bits numbers
- Break into r-bits digits, have d=ceil(b/r)
- Use Counting Sort k = 2^r − 1
- T_{RS}(n) is in \Theta((b/r)(n + 2^r))
- Exercise: Choose r and compare Radix Sort and Merge-Sort
Searching

The Selection Problem

- INPUT: A set A of n (distinct) numbers and a number i, $0 \leq i \leq n$
- OUTPUT: The element i in A that is larger than exactly $i-1$ other elements of A

- The element i is called the i-th order statistics of A
- The first order statistics is the minimum ($i=1$)
- The n-th is the maximum ($i=n$)
- Solvable in $O(n \log n)$
Minimum or Maximum

Minimum(A,n)
\[\text{min} = A[1] \]
for i = 2 to n do
 if min > A[i] then min = A[i]
return min

\[n-1 \text{ comparisons, } T_M(n) \in O(n) \]
\[n-1 \text{ comparisons are necessary (tournament)} \]
\[\rightarrow T_M(n) \in \Omega(n) \]

Minimum is OPTIMAL
Minimum AND Maximum, 1

Min-Max(A,n,min,max)
if n mod 2 = 0
 then max=MAX(A[1],A[2]) // one comparison
 min=MIN(A[1],A[2]) // one comparison
 k=3
else max=min=A[1]
 k=2
for i = k to n-1 step 2 do // floor(n/2) iter
Minimum AND Maximum, 2

if A[i] > A[i+1] then
 if max < A[i] then max = A[i];
 if min > A[i+1] then min = A[i+1];
else
 if max < A[i+1] then max = A[i+1];
 if min > A[i] then min = A[i];
Min-Max Analysis

- n odd: $3\lceil n/2 \rceil$ comparisons
- n even: $3((n-2)/2)+1=(3n/2)-2$
- At most $3\lceil n/2 \rceil < 2n-2$ comparisons
- Both are asymptotically in $\Theta(n)$
Searching for a Given Element

- Unsorted arrays, worst-case $\Theta(n)$
- Sorted arrays, binary search

Input: A sorted array A, a value v and a range $[\text{low}...\text{high}]$ in A to search for v

Output: i such that $v = A[i]$ or NIL is v is not found in A between low and high

Initial call: $A, v, 1, n$
Iterative Binary Search

ITERATIVE-BINARY-SEARCH(A, v, low, high)

while low ≤ high do
 mid=(low+high)/2
 if v = A[mid] then return mid
 if v > A[mid] then low=mid+1
 else high=mid-1
return NIL
Recursive Binary Search

REC-BSEARCH(A, v, low, high)

if low > high then return NIL
mid=(low+high)/2
if v = A[mid] then return mid
if v > A[mid]
 then return REC-BSEARCH(A, v, mid+1, high)
else return REC-BSEARCH(A, v, low, mid-1)
Binary Search Analysis

Based on the comparison on \(v \) with \(A \)'s middle element the search continues halved.

The recurrence for the procedures is:

- \(T(n) = \Theta(1) \) \quad n=1
- \(T(n) = T(n/2) + \Theta(1) \) \quad n>1

Solution: \(T(n) \) in \(\Theta(\log n) \)
Assignments

- Textbook, pages 165—173, 183—185
- Updated information on the class web page:
 www.ece.neu.edu/courses/eceg205/2004fa